一种任务执行方法、装置、存储介质及电子设备

    公开(公告)号:CN117370536A

    公开(公告)日:2024-01-09

    申请号:CN202311673949.3

    申请日:2023-12-07

    Abstract: 本说明书公开了一种任务执行方法、装置、存储介质及电子设备。可以将用户输入的指定文本输入到预先训练的语言模型中,以通过语言模型确定指定文本对应的文本特征表示,并可以确定每个候选问题文本特征表示与文本特征表示之间的相关度,以根据相关度,从各候选问题文本特征表示中确定出与文本特征表示相匹配的候选问题文本特征表示,作为目标问题文本特征表示,并根据目标问题文本特征表示与所述文本特征表示之间的相关度是否低于预设的相关度阈值,确定是否向用户请求补充文本信息,以及是否将预先确定的目标问题文本特征表示对应的回复文本,作为指定文本对应的目标回复文本回复给用户。

    一种模型训练的方法以及任务执行方法及装置

    公开(公告)号:CN116777010B

    公开(公告)日:2023-12-19

    申请号:CN202311080508.2

    申请日:2023-08-25

    Abstract: 本说明书公开了一种模型训练的方法以及任务执行方法及装置,可以将获取到的在指定空间中混合物态在第一时刻下的各物理场数据输入到预测模型中,来训练该预测模型,这样一来,在将训练后的预测模型应用到实际任务执行的过程中时,相比于现有技术并不需要耗费过多的时间来一步步推导出下一时刻的指定空间中混合物态在第二时刻下的各物理场数据,这样不仅提高了预测物理场数据的效率,而且由于在训练阶段,是以混合物态在第一时刻和第二时刻前后之间的质量分布符合质量约束为条件,对预测模型进行训练,所以可以保证预测模型在实际应用中所预测出的物理场数据的准确性。(56)对比文件Shuai Wang et al..Multi-scalenumerical simulation of fluidized beds:Model applicability assessment.《Particuology 80》.2022,11-41.

    一种算子优化调度模型的训练方法、装置、介质及设备

    公开(公告)号:CN116755862B

    公开(公告)日:2023-12-19

    申请号:CN202311010092.7

    申请日:2023-08-11

    Abstract: 本说明书公开了一种算子优化调度模型的训练方法、装置、介质及设备,包括:确定当前时刻作为训练样本的预先基于图像数据训练的图像分类模型中的各算子的信息,并输入待训练的算子优化调度模型,确定当前时刻待优化算子。确定对待优化算子进行优化后的待优化算子对图像数据进行图像分类时的运行下降时间。再根据信息、待优化算子以及待优化算子对图像数据进行图像分类时的运行下降时间,对待训练的算子优化调度模型进行训练,使得可以通过训练完成的算子优化调度模型确定当前时刻所需调度进行优化的算子,减少人工设计选择所需优化的算子的策略的麻烦,加快后续将待部署的图像分类模型部署到硬件上的速度。

    一种计算设备散热的方法、装置、存储介质及电子设备

    公开(公告)号:CN116661574B

    公开(公告)日:2023-12-12

    申请号:CN202310860078.X

    申请日:2023-07-13

    Abstract: 本说明书公开了一种计算设备散热的方法、装置、存储介质及电子设备,本方法通过确定各时刻的计算设备的芯片的特征以及计算设备的散热单元中冷却介质的特征确定训练样本,并获取散热单元的控制指令作为训练样本的标注,然后针对每个特征维度,根据该维度的特征对训练样本进行排序以确定该维度的样本序列,再确定标注相同且连续的各训练样本组成的待选样本组,并确定包含训练样本数量不小于预设数量的待选样本组作为目标样本组,根据各目标样本组以及各目标样本组对应的标注确定控制规则,进一步对计算设备进行散热控制。本方法通过对历史上控制指令、芯片特征以及散热单元中冷却介质的特征的学习生成控制规则,使计算设备可以

    张量卸载方法、装置、计算机设备及存储介质

    公开(公告)号:CN117130693A

    公开(公告)日:2023-11-28

    申请号:CN202311397785.6

    申请日:2023-10-26

    Abstract: 本申请涉及一种张量卸载方法、装置、计算机设备及存储介质。所述方法包括:获取张量特征信息,所述张量特征信息包括待训练模型每层的显存容量需求、计算间隔以及计算延迟信息;基于预设卸载策略和所述显存容量需求确定显存约束条件,基于所述预设卸载策略和计算间隔确定卸载时间约束条件,所述预设卸载策略包括主存卸载和重计算卸载;基于所述显存约束条件和卸载时间约束条件筛选所述预设卸载策略,确定多个候选卸载策略;基于所述计算延迟信息确定每个候选卸载策略的额外计算延迟,基于所述额外计算延迟确定目标卸载策略,并基于所述目标卸载策略卸载张量。本申请在对模型训练精度影响较小或无影响的情况下,通过张量卸载来增加显存的有效容量。

    一种基于深度强化学习的2.5D总体布线方法和系统

    公开(公告)号:CN116384321B

    公开(公告)日:2023-11-07

    申请号:CN202310384336.1

    申请日:2023-04-11

    Abstract: 一种基于深度强化学习的2.5D总体布线方法,包含:步骤1:压缩,将3D总体布线问题压缩为2D总体布线问题;步骤2:数据预处理,包括将多引脚线网按半周长模型升序排序,然后基于直角Steiner最小树算法做拆解,线网拆解的子网再排序。步骤3:基于深度强化学习针对步骤2获得的两引脚对数据点对点布线,获得2D的总体布线方案,若布线方案有溢出,输出拥塞信息;否则执行步骤4。步骤4:通过直角结构层分配技术基于2D的总体布线方案获得3D的总体布线方案。本发明还包括一种基于深度强化学习的2.5D总体布线系统。本发明将多层总体布线问题压缩后基于深度强化学习进行求解,再利用层分配技术获得3D总体布线方案,有效降低算力成本并提高总体布线性能。

    一种演示文稿生成方法及装置

    公开(公告)号:CN116579308B

    公开(公告)日:2023-10-10

    申请号:CN202310819781.6

    申请日:2023-07-06

    Abstract: 本发明公开了一种演示文稿生成方法及装置,该方法包括:获取生成演示文稿的主题,基于预先构建并训练完成的文本生成模块,得到演示文稿的二级标题和每个二级标题下的文字内容;将所述演示文稿的主题、二级标题和每个二级标题下的文字内容结构化得到若干部分,将每个部分作为一页演示文稿,对除了首页和目录页以外的其他页进行关键词提取;基于提取出的关键词,通过文本生成图像模块生成各页演示文稿对应的配图图像;把划分后的文字内容和对应页的配图图像进行自动排版,得到完整的演示文稿。

    一种面向广域网的拥塞控制方法及装置

    公开(公告)号:CN116743660A

    公开(公告)日:2023-09-12

    申请号:CN202310903988.1

    申请日:2023-07-21

    Abstract: 本发明公开了一种面向广域网的拥塞控制方法:当交换机判定拥塞发生时,交换机获取接收缓冲区的网络包并构造拥塞通知报文;交换机直接将拥塞通知报文传递给发送方;其中,所述拥塞通知报文的目的IP地址为网络包的源IP地址,拥塞通知报文的源IP地址为网络包的目的IP地址;拥塞通知报文的目标TCP端口号为流量包的源TCP端口号,拥塞通知报文的源TCP端口号为网络包的目标TCP端口号;TCP头中拥塞窗口减小CWR和显示拥塞通知ECE同时被设置,表示该报文为拥塞通知报文;拥塞通知报文中TCP数据为拥塞状态相关信息。本发明还公开了一种面向广域网的拥塞控制装置。该方法及装置可以在广域网上传输拥塞通知报文,也可以缩短拥塞产生后的传输路径,提升拥塞控制的效果。

Patent Agency Ranking