一种车险反欺诈的图像采集质检方法、系统和装置

    公开(公告)号:CN115810134B

    公开(公告)日:2023-07-21

    申请号:CN202310110512.2

    申请日:2023-02-14

    Abstract: 本发明公开了一种车险反欺诈的图像采集质检方法、系统和装置,所述方法由车险理赔质检终端和车险理赔质检服务器执行,包括:通过车险理赔质检终端收集并识别分类包括车损情况、车辆信息、场景信息、驾驶员信息、三方信息在内的图像信息,对图像信息进行筛选,并对筛选后的图像信息进行标注;将标注后的图像信息发送至车险理赔质检服务器,以使车险理赔质检服务器执行图像质检,得到质检结果;险理赔质检服务器将质检结果返回至车险理赔质检终端。本发明方法能够在信息收集的过程中,完成车险现场数据的标注和识别,从收集端规范了数据的采集,提高了图像采集的质量。

    基于频域自注意力机制的夜间目标检测、训练方法及装置

    公开(公告)号:CN114972976B

    公开(公告)日:2022-12-20

    申请号:CN202210902801.1

    申请日:2022-07-29

    Abstract: 本发明公开了基于频域自注意力机制的夜间目标检测、训练方法及装置,采用具有夜间图像检测标签的开源数据集训练检测网络,首先将输入图像进行预处理,使其从RGB转化为YUV通道,分别将三个通道的图像划分成多个区块;对于三个通道的各个区块,分别进行DCT离散余弦变换;将各个区块中属于同一频域的信息依据其原本的空间关系存入同一通道中,生成数个代表不同频域的通道;将所有频域通道输入自注意力网络模块,该模块通过计算各通道之间的可缩放点积自注意力,输出每个通道动态加权后的数值,再将其分别输入相同的多层感知器MLP;将输出结果输入检测网络中,最终获得图像的检测结果。

    一种基于深度学习的脉搏波峰值检测与分类的方法和装置

    公开(公告)号:CN115040089B

    公开(公告)日:2022-12-06

    申请号:CN202210981128.5

    申请日:2022-08-16

    Abstract: 本发明涉及非接触式生理信号检测领域,尤其涉及一种基于深度学习的脉搏波峰值检测与分类的方法和装置,该方法包括:步骤一,利用血氧仪采集人体指尖的脉搏波信号,采用滑动窗口的方式进行分帧处理,得到若干段短信号;步骤二,将若干段短信号按照时间顺序排列,输入到关键点检测模块中进行峰值检测和整理得到所有峰值点;步骤三,将步骤二得到的峰值点及采集得到的整段脉搏波信号输入到分类模块中,通过判断信号的强度、波动和平涩程度来对脉搏波信号进行分类,并记录。本发明能够有效应用于基于脉搏波的生物识别系统中,并提高识别的准确率。

    一种基于模糊语义建模的深度场景文本检测方法和装置

    公开(公告)号:CN114972947B

    公开(公告)日:2022-12-06

    申请号:CN202210882622.6

    申请日:2022-07-26

    Abstract: 本发明公开了一种基于模糊语义建模的深度场景文本检测方法和装置,该方法包括:步骤一,获取现有的用于训练场景文本检测的多组具有真值标注的图像数据集;步骤二,对数据集中的图像进行特征学习与全局特征融合,得到融合的全局特征图;步骤三,对融合的全局特征图进行像素级别语义分类,同时通过数值回归预测像素级别的语义可靠性,在全监督下进行多分支的联合优化,完成端到端联合学习框架的构建;步骤四,使用端到端联合学习框架,预测图像中的模糊语义信息,并利用可靠性分析及融合获得文本属性图;步骤五,对文本属性图进行二值化和联通域提取,得到最终的文本检测结果。本发明实现方法简便,灵活鲁棒,适用范围广。

    基于图神经网络的基因表型训练、预测方法及装置

    公开(公告)号:CN115331732A

    公开(公告)日:2022-11-11

    申请号:CN202211238697.7

    申请日:2022-10-11

    Abstract: 本发明公开了基于图神经网络的基因表型训练、预测方法及装置,根据现有公开的基因位点与表型的相关性,构建图神经网络:节点代表基因位点,边代表两个基因位点同时与某个表型相关,且边的权重代表基因位点之间的关联程度;采集样本的基因数据,并收集各个样本对应的表型数据;训练过程中,对输入的基因数据基于其位点探测概率值进行编码;将编码数据输入构建的图神经网络;采用均匀采样进行节点邻域选择,并通过邻域节点的权重与卷积核参数更新各个节点;将每个节点的输出结果进行拼接,并将其输入多层感知器,输出表型分类结果;将分类结果与真值进行比较,训练与验证图神经网络;再将待分类的基因数据输入训练好的图神经网络进行表型分类。

    一种基于颜色增广的实时车牌检测识别方法和装置

    公开(公告)号:CN115019297A

    公开(公告)日:2022-09-06

    申请号:CN202210930831.3

    申请日:2022-08-04

    Abstract: 本发明公开了一种基于颜色增广的实时车牌检测识别方法和装置,该方法包括:步骤一,获取包含车牌的汽车图像,作为车牌检测训练集,通过训练好的车牌检测模型推理得到车牌检测结果;步骤二,对检测得到的车牌进行视图矫正变换,得到车牌正面视角的图像;步骤三,将得到的车牌正面视角的图像,作为车牌识别训练集,使用基于深度神经网络的车牌识别模型进行模型训练,再通过训练好的车牌识别模型进行车牌识别得到车牌识别结果;步骤四,将车牌检测结果和车牌识别结果在原测试图像上进行展示或者按需要输出,完成对图像中的车牌的检测和识别。本发明实现方法简单,可移植性强,提高了车牌检测模型和车牌识别模型的准确率,增强了模型的泛化能力。

Patent Agency Ranking