-
公开(公告)号:CN117036829A
公开(公告)日:2023-11-10
申请号:CN202311278518.7
申请日:2023-10-07
Applicant: 之江实验室 , 中国科学院东北地理与农业生态研究所
IPC: G06V10/764 , G06V10/774 , G06V10/82 , G06V10/74 , G06N3/0464 , G06N3/08
Abstract: 一种基于原型学习实现标签增强的叶片细粒度识别方法和系统,包括:构建细粒度叶片分类数据集;将训练图像输入模型并得到最后一层卷积网络输出的特征向量,按照图像类别标签获取每个类的平均特征值;将训练图像输入上述卷积网络,计算其在最后一个卷积层输出的向量与所有原型特征的相似度;将上述相似度结果与输入图像的真实标签进行加权融合,获得软标签;根据输入图像的真实标签,对原型特征库中对应的原型向量进行迭代更新;获取输入图像经过网络分类层输出的预测标签;将预测标签与软标签进行相似度计算,作为损失函数指导整个系统的训练;将待测图像输入训练完成的网络进行分类预测,根据预测的标签分布确定图像类别。
-
公开(公告)号:CN116072214B
公开(公告)日:2023-07-11
申请号:CN202310202392.9
申请日:2023-03-06
Applicant: 之江实验室
Abstract: 本发明公开了基于基因显著性增强的表型智能预测、训练方法及装置,通过基因形态与表型高低构建实际分布列联表,再根据卡方假设,构建基因形态与表型高低的期望分布列联表,对每个基因位点与表型进行卡方检验,基于卡方列联表得卡方假设成立的概率,得到基因位点对表型的显著性值,同时,对基因进行编码;然后根据每个基因位点的显著性值对基因的编码进行放大,从而增强基因数据与表型的关联度,大大提高了基于基因位点预测表型的精度。本发明针对染色体为双倍体的生物,采用深度学习训练的方法,通过增强基因位点的数据,从而提高基因位点到表型的预测精度。
-
公开(公告)号:CN116072214A
公开(公告)日:2023-05-05
申请号:CN202310202392.9
申请日:2023-03-06
Applicant: 之江实验室
Abstract: 本发明公开了基于基因显著性增强的表型智能预测、训练方法及装置,通过基因形态与表型高低构建实际分布列联表,再根据卡方假设,构建基因形态与表型高低的期望分布列联表,对每个基因位点与表型进行卡方检验,基于卡方列联表得卡方假设成立的概率,得到基因位点对表型的显著性值,同时,对基因进行编码;然后根据每个基因位点的显著性值对基因的编码进行放大,从而增强基因数据与表型的关联度,大大提高了基于基因位点预测表型的精度。本发明针对染色体为双倍体的生物,采用深度学习训练的方法,通过增强基因位点的数据,从而提高基因位点到表型的预测精度。
-
公开(公告)号:CN114972976A
公开(公告)日:2022-08-30
申请号:CN202210902801.1
申请日:2022-07-29
Applicant: 之江实验室
Abstract: 本发明公开了基于频域自注意力机制的夜间目标检测、训练方法及装置,采用具有夜间图像检测标签的开源数据集训练检测网络,首先将输入图像进行预处理,使其从RGB转化为YUV通道,分别将三个通道的图像划分成多个区块;对于三个通道的各个区块,分别进行DCT离散余弦变换;将各个区块中属于同一频域的信息依据其原本的空间关系存入同一通道中,生成数个代表不同频域的通道;将所有频域通道输入自注意力网络模块,该模块通过计算各通道之间的可缩放点积自注意力,输出每个通道动态加权后的数值,再将其分别输入相同的多层感知器MLP;将输出结果输入检测网络中,最终获得图像的检测结果。
-
公开(公告)号:CN114202794A
公开(公告)日:2022-03-18
申请号:CN202210147360.9
申请日:2022-02-17
Applicant: 之江实验室
Abstract: 本发明涉及人工智能算法技术领域,具体涉及一种基于人脸ppg信号的疲劳检测方法和装置,该方法包括以下步骤:步骤一,通过摄像头采集包含人脸的视频帧,进行人脸提取;步骤二,使用关键点检测方法,提取人脸关键点,进行头部运动检测;步骤三,对提取人脸进行预处理,通过疲劳分类模型并结合检测到的头部运动信息,得到疲劳检测结果。本发明针对于人脸的生理信号变化,采用深度学习训练的方式,增加疲劳检测与人脸生理信号变化的相关性,从而提高基于人脸的疲劳检测精度。
-
公开(公告)号:CN118466864A
公开(公告)日:2024-08-09
申请号:CN202410937905.5
申请日:2024-07-12
Applicant: 之江实验室
IPC: G06F3/06
Abstract: 在本说明书提供一种卫星数据存储方法、装置、介质及设备中,首先确定待存储数据的数据大小,其次根据处理器的读取线程数量,分割待存储数据,得到各第一子数据,并确定各第一子数据与各读取线程的对应关系,通过所述各第一子数据对应的读取线程,将各第一子数据写入处理器缓存,最后响应于缓存中任一完整写入的第一子数据,根据处理器的写入线程数量,分割完整写入的第一子数据,得到各第二子数据,确定各第二子数据与各写入线程的对应关系,并据此对应关系,将各第二子数据写入存储器,通过对待存储数据的多次分割,避免了卫星在存储待存储数据时,出现因处理器内存大小不足导致的读写错误,降低了对处理器缓存的要求。
-
公开(公告)号:CN117593652A
公开(公告)日:2024-02-23
申请号:CN202410075345.7
申请日:2024-01-18
Applicant: 之江实验室
IPC: G06V20/10 , G06V10/26 , G06V10/82 , G06V10/774 , G06N3/0464
Abstract: 本发明公开了一种智能识别大豆叶片叶形的方法和系统,方法包括以下步骤:构建包含完整大豆叶片图像的训练集对基于深度卷积神经网络的大豆叶片检测分割模型进行训练,将待检测的大豆叶片图像输入训练好的大豆叶片检测分割模型并输出每张图像中分割出的大豆叶片图像;基于分割出的大豆叶片图像,采用最小外接矩形法计算叶长和叶宽,进而计算得到大豆叶片长宽比;将分割出的大豆叶片图像切分为若干区域,基于大豆叶片长宽比及各区域的叶片像素量判定大豆叶片叶形。本发明能够实现对大豆叶片叶形的自动高效识别,识别精度和速度高,适用于智能识别大豆品种等实战部署场景。
-
公开(公告)号:CN117095240A
公开(公告)日:2023-11-21
申请号:CN202311332316.6
申请日:2023-10-16
Applicant: 之江实验室 , 中国科学院东北地理与农业生态研究所
IPC: G06V10/764 , G06V10/44 , G06V10/42 , G06V10/26 , G06V10/82 , G06N3/0464 , G06N3/094
Abstract: 一种基于细粒度特征的叶片分类方法和系统,其方法包含:叶片图像随机混乱模块对同一类的两张叶片图像分区块之后,再把所有区块进行随机重组,得到两张相同数量和尺寸的重组叶片图像,以混乱叶片的全局特征;使用深度学习网络提取叶片的原图特征和重组图特征:训练时,在特征层后面加全连接层,并计算分类损失和对抗损失向前传播;测试时,使用模型便可以提取原图的局部细粒度特征和全局特征,从而实现对叶片的分类。本发明对叶片图像进行重组,模型在重组图像上得不到全局特征时,将专注于学习叶片的局部细粒度特征,而原始图像的输入又可以提供模型全局特征的学习,从而大大提高叶片分类的精度。
-
公开(公告)号:CN117079060A
公开(公告)日:2023-11-17
申请号:CN202311325300.2
申请日:2023-10-13
Applicant: 之江实验室 , 中国科学院东北地理与农业生态研究所
IPC: G06V10/764 , G06V10/774 , G06V10/25 , G06V20/40 , G06V10/82 , G06N3/0442 , G06N3/0464 , G06N3/045
Abstract: 一种基于光合信号的叶片智能分类方法和系统,其方法包含:叶片光合信号提取、叶片光合信号分类。叶片光合信号提取通过叶片检测模型提取出视频中的叶片,使用分割算法对提取出的叶片进行分割,从而分割出叶片区块,然后以叶片区块内的像素均值记为当前帧的光合信号值,视频的多帧连续光合信号值即组成此叶片的光合信号。叶片光合信号分类使用神经网络对采集到的叶片光合信号进行特征提取训练,来实现叶片的分类。本发明提出一种基于植物叶片的光合信号,确定其提取方法,并针对植物叶片的光合信号变化,采用深度学习训练的方式,提取出植物叶片与其光合信号变化的相关性,从而大大提高叶片分类的精度。
-
-
-
-
-
-
-
-