-
公开(公告)号:CN116797904A
公开(公告)日:2023-09-22
申请号:CN202310444502.2
申请日:2023-04-24
Applicant: 之江实验室 , 中国科学院东北地理与农业生态研究所
IPC: G06V10/82 , G06V10/774 , G06N3/08 , G06N3/0464 , G06V10/74 , G06V10/764 , G06N5/02
Abstract: 本发明公开一种图像识别不确定性知识蒸馏方法与系统,收集有标签训练图像样本;选定第一神经网络模型,使用训练图像样本进行训练,得到训练好的第一神经网络模型,输入训练样本图像得到第一神经网络模型中间层样本特征表达及输出的软标签信息;选定第二神经网络模型,对训练图像样本进行处理,得到中间层样本特征表达,与第一神经网络模型的中间层样本特征表达进行不确定性建模,得到第一损失函数;使用第一神经网络模型输出的软标签信息及训练图像样本,联合第一损失函数,更新第二神经网络模型的参数,得到训练好的第二神经网络模型,同时利用本发明第二神经网络模型对待处理图像进行图像识别处理,提高图像识别的准确度。
-
公开(公告)号:CN119876474A
公开(公告)日:2025-04-25
申请号:CN202510255060.6
申请日:2025-03-05
Applicant: 之江实验室
IPC: C12Q1/6895 , C12N15/11
Abstract: 本发明公开了一种与大豆株高显著关联的单核苷酸突变位点SNP、KASP标记及其应用。该SNP分子标记位于大豆第5染色体36108741bp位置,碱基为T或C,与大豆株高表型显著相关,位点基因型为TT的大豆品种的株高显著低于基因型为CC的大豆品种;依据此SNP位点开发三条KASP引物,分别为SEQ ID NO.1、SEQ ID NO.2和SEQ ID NO.3,利用该引物对待测大豆进行PCR扩增和基因分型,若检测结果显示此标记位置碱基类型为T,则判定该大豆品种株高较矮;若检测结果为C,则判定株高较高。本发明的SNP分子标记可以作为大豆育种过程中株高性状的辅助选择标记,提高选择的准确性,加快大豆株高性状相关育种过程。
-
公开(公告)号:CN118279610B
公开(公告)日:2024-08-30
申请号:CN202410704308.8
申请日:2024-06-03
Applicant: 之江实验室 , 中国科学院东北地理与农业生态研究所
Abstract: 本发明公开了一种基于图像表型匹配的大豆表型识别方法、电子设备、介质,包括:获取待识别的大豆图片;将其输入至预先训练好的图像编码器中提取得到图像特征,将图像特征输入至预先训练好的表型解码器中得到大豆图片获得表型结果;其中,图像编码器以及表型解码器的训练过程包括:获取大豆成熟期图像并对其设置表型标签和数组标签;将大豆成熟期图像及其对应的表型标签分别输入至图像编码器、表型编码器,从而训练图像编码器、表型编码器;固定表型编码器的网络权重;将表型标签输入至表型编码器提取得到表型特征,将表型特征输入至表型解码器提取得到表型结果识别特征,基于表型结果识别特征与数组标签间的差值从而反向传播优化表型解码器。
-
公开(公告)号:CN116703820B
公开(公告)日:2024-05-03
申请号:CN202310406884.X
申请日:2023-04-17
Applicant: 之江实验室 , 中国科学院东北地理与农业生态研究所
IPC: G06T7/00 , G06T7/70 , G06N3/0464 , G06N3/084 , G06V10/82 , G06V10/774
Abstract: 一种基于热力图的高密度豆粒计数及中心点定位方法,用高斯函数生成高斯核模板,结合已标记的豆粒中心点位置,生成用于豆粒计数的真值热力图;采用基于空洞卷积的CSRNet作为密度图估计模块,将原始图像与真值热力图输入到模型中计算得到与原始图像同大小的热力图,通过对比预测热力图与真值热力图的L2损失进行参数的学习,实现高质量的热力图估计。对于待测试图像,使用CSRNet预测热力图,再通过判断局部最大位置点,从热力图中获取得到所有中心点的位置坐标,并通过局部中心点热力图的值取整获得豆粒数。还包括一种基于热力图的高密度豆粒计数及中心点定位系统。本发明可提高豆粒计数模型在高密度、遮挡严重场景下的计数准确性。
-
公开(公告)号:CN116817754B
公开(公告)日:2024-01-02
申请号:CN202311082530.0
申请日:2023-08-28
Applicant: 之江实验室 , 中国科学院东北地理与农业生态研究所
IPC: G01B11/00 , G01B11/02 , G01N21/84 , G06V20/60 , G06V10/10 , G06V10/44 , G06V10/50 , G06V10/75 , G06V10/82
Abstract: 一种基于稀疏重建的大豆植株表型提取方法及系统,其方法包括:对大豆植株进行多视角成像,通过密度图估计在各视图中提取植株二维关键点,包括端点关键点、节点关键点和豆粒关键点,同时通过亲和力场估计给出同一豆荚中豆粒关联关系,基于对称极线距离和二分匹配,关联各视图中的同一关键点和同一豆荚,进而通过三角测量计算各关键点的三维坐标,用于测量株高、统计豆粒的空间分布、计算节数、单株粒数和荚数等。本发明可精准且高效的提取大豆植株表型,具有较高的可行性和实用性。(56)对比文件Haoran Zhao等.Exploring BetterSpeculation and Data Locality in SparseMatrix-Vector Multiplication on IntelXeon.2020 IEEE 38th InternationalConference on Computer Design.2020,全文.Yourui Huang等.Low IlluminationSoybean Plant Reconstruction and TraitPerception.Agriculture.2022,第12卷(第12期),第2.1-2.3节.李晨雨.基于三维重建的大豆植株叶面积自动测量方法的研究.中国优秀硕士学位论文全文数据库 农业科技辑.2023,(第1期),全文.
-
公开(公告)号:CN116817754A
公开(公告)日:2023-09-29
申请号:CN202311082530.0
申请日:2023-08-28
Applicant: 之江实验室 , 中国科学院东北地理与农业生态研究所
IPC: G01B11/00 , G01B11/02 , G01N21/84 , G06V20/60 , G06V10/10 , G06V10/44 , G06V10/50 , G06V10/75 , G06V10/82
Abstract: 一种基于稀疏重建的大豆植株表型提取方法及系统,其方法包括:对大豆植株进行多视角成像,通过密度图估计在各视图中提取植株二维关键点,包括端点关键点、节点关键点和豆粒关键点,同时通过亲和力场估计给出同一豆荚中豆粒关联关系,基于对称极线距离和二分匹配,关联各视图中的同一关键点和同一豆荚,进而通过三角测量计算各关键点的三维坐标,用于测量株高、统计豆粒的空间分布、计算节数、单株粒数和荚数等。本发明可精准且高效的提取大豆植株表型,具有较高的可行性和实用性。
-
公开(公告)号:CN116703820A
公开(公告)日:2023-09-05
申请号:CN202310406884.X
申请日:2023-04-17
Applicant: 之江实验室 , 中国科学院东北地理与农业生态研究所
IPC: G06T7/00 , G06T7/70 , G06N3/0464 , G06N3/084 , G06V10/82 , G06V10/774
Abstract: 一种基于热力图的高密度豆粒计数及中心点定位方法,用高斯函数生成高斯核模板,结合已标记的豆粒中心点位置,生成用于豆粒计数的真值热力图;采用基于空洞卷积的CSRNet作为密度图估计模块,将原始图像与真值热力图输入到模型中计算得到与原始图像同大小的热力图,通过对比预测热力图与真值热力图的L2损失进行参数的学习,实现高质量的热力图估计。对于待测试图像,使用CSRNet预测热力图,再通过判断局部最大位置点,从热力图中获取得到所有中心点的位置坐标,并通过局部中心点热力图的值取整获得豆粒数。还包括一种基于热力图的高密度豆粒计数及中心点定位系统。本发明可提高豆粒计数模型在高密度、遮挡严重场景下的计数准确性。
-
-
公开(公告)号:CN116994154A
公开(公告)日:2023-11-03
申请号:CN202311092395.8
申请日:2023-08-29
Applicant: 之江实验室 , 中国科学院东北地理与农业生态研究所
Abstract: 本发明涉及无人机应用技术领域,具体公开了一种基于无人机的大豆苗期特征获取方法及系统,所述方法包括向地图服务发送卫星图获取请求,获取大豆种植区的卫星图;对所述卫星图进行识别,确定区域分隔线,根据所述区域分隔线建立检测路径;将检测路径向无人机组合发送,实时获取无人机组合的运动参数,根据运动参数确定大豆苗期特征;其中,所述无人机组合在检测路径上运动时,实时获取种植区图像,对种植区图像进行识别,根据识别结果实时调节运动参数。本发明将数据识别过程内置于无人机,通过定位器获取无人机的运动参数即可快速判定期苗特征,此外,还可以通过参数差定位可能存在缺陷的点,处理的源数据仅为位置信息,识别效率较高。
-
公开(公告)号:CN116884481A
公开(公告)日:2023-10-13
申请号:CN202310697601.1
申请日:2023-06-13
Applicant: 之江实验室 , 中国科学院东北地理与农业生态研究所
IPC: G16B20/30 , G06N3/0464 , G06N3/0895 , G16B20/00
Abstract: 一种基于图卷积神经网络与自监督重构学习的基因到表型预测方法和系统,该方法基于图卷积神经网络的方法,将每个品种的大豆作为图节点,大豆的基因序列为节点的特征,利用每个品种大豆之间的亲缘关系作为图的边,将构建的图输入图卷积神经网络与自监督重构网络中,更新节点特征,实现大豆基因到表型的预测。本发明创新性的利用图卷积神经网络实现基因到表型的预测,利用自监督学习降低基因维度,并将品种之间的亲缘关系作为先验关联不同品种指导基因到表型挖掘,提高表型预测的效果。
-
-
-
-
-
-
-
-
-