一种图像生成方法、系统、电子设备及可读存储介质

    公开(公告)号:CN117808923B

    公开(公告)日:2024-05-14

    申请号:CN202410224976.0

    申请日:2024-02-29

    Abstract: 本发明公开了一种图像生成方法、系统、电子设备及可读存储介质,涉及图像内容生成领域,为解决纯文本生成图像的方案不能满足特定任务场景下的情感需求,该图像生成方法包括:获取语义指导文本和情绪指导文本;基于语义指导文本和情绪指导文本检索得到多个参考图像样本;提取多个参考图像样本的特征,对所有特征中的至少两个特征进行组合得到多个图像组合语义特征;获取语义指导文本对应的文本语义特征,基于与文本语义特征的相似度最高的图像组合语义特征生成关联图像。本发明能够提高图像生成精度,使生成的关联图像与指导文本和情绪文本高度关联,在满足任务场景的语义文本要求的同时,满足该任务场景下的情感需求。

    任务处理方法、装置、云边端系统、设备及介质

    公开(公告)号:CN117808036B

    公开(公告)日:2024-04-30

    申请号:CN202410224860.7

    申请日:2024-02-29

    Abstract: 本发明涉及人工智能技术领域,公开了一种任务处理方法、装置、云边端系统、设备及介质,应用于云边端系统的边缘服务器,包括:响应于推理请求,将待处理任务输入至深度学习模型中进行推理,以获取相应的任务结果;在推理的过程中,针对待处理任务进行上下文查询,获取待处理任务的重复利用效率;根据重复利用效率,动态调整深度学习模型对应的缓存数据;缓存数据包含待处理任务在深度学习模型中推理产生的中间数据和任务结果;同时,将上下文查询到的数据发送至人工智能生成内容应用程序对应的其他边缘服务器。深度学习模型对应的缓存会随着输入任务的重复利用效率被动态调整,可以提高任务处理速度和数据传输效率,节省计算资源,降低总成本。

    视频语言任务执行及其模型训练方法、装置、设备、介质

    公开(公告)号:CN117876940A

    公开(公告)日:2024-04-12

    申请号:CN202410270242.6

    申请日:2024-03-11

    Abstract: 本发明公开了一种视频语言任务执行及其模型训练方法、装置、设备、介质,应用于视频理解技术领域。其中,方法包括将具有文本标签的视频样本、待学习视频参数和待学习帧参数输入至视频语言模型,视觉语言预训练模型提取视觉特征和参数特征,视频帧适配器基于待学习帧参数,将视觉特征转换为满足视觉语言预训练模型需求的帧视觉信息,视频适配器基于待学习视频参数提取视频视觉信息;根据帧视觉信息、视频视觉信息与文本语义特征之间损失信息,对视频语言模型进行迭代更新,直至满足预设模型训练结束条件。本发明可以解决相关技术视频语言模型收敛慢,训练耗时耗资源的问题,能够有效提升视频语言模型的训练效率,节省模型训练所需的计算资源。

    一种图像生成方法、系统、电子设备及可读存储介质

    公开(公告)号:CN117808923A

    公开(公告)日:2024-04-02

    申请号:CN202410224976.0

    申请日:2024-02-29

    Abstract: 本发明公开了一种图像生成方法、系统、电子设备及可读存储介质,涉及图像内容生成领域,为解决纯文本生成图像的方案不能满足特定任务场景下的情感需求,该图像生成方法包括:获取语义指导文本和情绪指导文本;基于语义指导文本和情绪指导文本检索得到多个参考图像样本;提取多个参考图像样本的特征,对所有特征中的至少两个特征进行组合得到多个图像组合语义特征;获取语义指导文本对应的文本语义特征,基于与文本语义特征的相似度最高的图像组合语义特征生成关联图像。本发明能够提高图像生成精度,使生成的关联图像与指导文本和情绪文本高度关联,在满足任务场景的语义文本要求的同时,满足该任务场景下的情感需求。

    机器学习方法、装置、设备、联邦学习系统及存储介质

    公开(公告)号:CN117808126A

    公开(公告)日:2024-04-02

    申请号:CN202410230008.0

    申请日:2024-02-29

    Abstract: 本发明公开了一种机器学习方法、装置、设备、联邦学习系统及存储介质,属于边缘计算领域,用于在模型聚合过程中识别并剔除恶意用户的模型数据,解决了恶意用户攻击导致模型精度下降的问题。一方面边缘计算设备可以在簇内选择与自身的相关性达标的边缘计算设备的模型参数对自身的模型参数进行更新,另一方面簇头在进行簇内聚合时可以排除异常的边缘计算设备的模型参数,通过两层的风险识别,可以精准的识别并忽略异常的模型参数,排除了风险,有利于提升最终得到的全局网络模型的性能,使中心服务器在工业设备故障预测、网络安全问题识别与图片分类时发挥最优的效果,也避免了全局网络模型学习到恶意用户希望的特定行为。

    任务处理方法、装置、云边端系统、设备及介质

    公开(公告)号:CN117808036A

    公开(公告)日:2024-04-02

    申请号:CN202410224860.7

    申请日:2024-02-29

    Abstract: 本发明涉及人工智能技术领域,公开了一种任务处理方法、装置、云边端系统、设备及介质,应用于云边端系统的边缘服务器,包括:响应于推理请求,将待处理任务输入至深度学习模型中进行推理,以获取相应的任务结果;在推理的过程中,针对待处理任务进行上下文查询,获取待处理任务的重复利用效率;根据重复利用效率,动态调整深度学习模型对应的缓存数据;缓存数据包含待处理任务在深度学习模型中推理产生的中间数据和任务结果;同时,将上下文查询到的数据发送至人工智能生成内容应用程序对应的其他边缘服务器。深度学习模型对应的缓存会随着输入任务的重复利用效率被动态调整,可以提高任务处理速度和数据传输效率,节省计算资源,降低总成本。

    一种图像特征数据的提取方法、系统及相关装置

    公开(公告)号:CN113706366B

    公开(公告)日:2024-02-27

    申请号:CN202110873716.2

    申请日:2021-07-30

    Abstract: 本申请提供一种图像特征数据的提取方法,包括:获取图像特征数据,并确定相应的并行通道数;将所述并行通道数作为所述图像特征数据的深度,增大所述图像特征数据的高度;利用FPGA的预设数量个RAM作为DDR的第一级缓存进行数据复用;在所述第一级缓存后端配置与卷积核相对应的寄存器,利用所述寄存器逐行输出所述图像特征数据。本申请能最大限度提高DDR的读写效率,实现流水线不间断数据输出,同时降低了DDR的数据读取压力,能满足后端高带宽卷积计算单元的输入需求。本申请还提供一种图像特征数据的提取系统、计算机可读存储介质和电子设备,具有上述有益效果。

    一种任务处理方法、装置、系统、设备及可读存储介质

    公开(公告)号:CN117094376B

    公开(公告)日:2024-02-23

    申请号:CN202311352992.X

    申请日:2023-10-19

    Abstract: 本发明在计算机应用技术领域公开了一种任务处理方法、装置、系统、设备及可读存储介质,该方法利用会话基础大模型对输入信息进行处理,得到用户意图;将用户意图输入动作状态管理器进行动作分析,得到处理用户意图的动作序列;从工具库中选出与动作序列匹配的目标工具;调用目标工具,执行动作序列中的动作。本发明的技术效果:提供了实现通用人工智能AGI的一个新范式,让智能体学会使用工具,并基于行为/动作作为驱动,将基础模型与现有工具连接起来,从而执行多样化的任务。进一步,可实现通用人工智能的一致性互联,实现功能池的虚拟可扩展,实现现有工具的高效利用,实现现有数据重复利用,提高效率。

    基于预训练语言模型的三维场景生成方法及相关组件

    公开(公告)号:CN117475089A

    公开(公告)日:2024-01-30

    申请号:CN202311811992.1

    申请日:2023-12-27

    Abstract: 本申请公开了一种基于预训练语言模型的三维场景生成方法及相关组件,涉及人工智能领域,解决现有三维场景生成精度低的问题。该方案通过获取用户输入的第一文本描述信息,对其进行解析,得到场景空间信息和三维物体的第二文本描述信息,可以更精确地了解目标三维场景的要求和构成;根据解析得到的信息生成三维场景空间布局,并根据第二文本描述信息生成相应的三维物体数据,最后通过融合得到最终的目标三维场景。本申请采用分而治之的思想,更注重对第一文本描述信息的解析和理解,将其分解为多个细节,并通过分步骤生成场景空间布局和三维物体的三维物体数据,最后再将其融合,使最终得到的目标三维场景的细节更准确。

    一种图像侵权检测方法、装置、设备及可读存储介质

    公开(公告)号:CN117474903A

    公开(公告)日:2024-01-30

    申请号:CN202311800569.1

    申请日:2023-12-26

    Abstract: 本发明涉及人工智能技术领域,具体公开了一种图像侵权检测方法、装置、设备及可读存储介质,通过对第一样本图像数据集中的部分第一样本图像进行颜色扭曲处理后训练二分类探针检测模型,并对未授权图像进行颜色扭曲处理后以处理后的未授权图像替换未授权图像进行发布,从而对于文生图模型训练任务对应的文生图训练图像数据集,可以利用二分类探针检测模型识别得到文生图训练图像数据集中的探针检测结果以检测样本侵权事件。颜色扭曲相较于直接添加水印来说不易被人眼识别也难以被常用的预处理增强干扰,从而有效避免未授权图像被抹掉水印的情况,而能够被训练的二分类探针检测模型检出,从而实现对文生图模型训练时采用的图像是否侵权进行检出。

Patent Agency Ranking