-
公开(公告)号:CN113058582A
公开(公告)日:2021-07-02
申请号:CN202110254693.7
申请日:2021-03-09
Applicant: 哈尔滨工业大学
Abstract: 本发明公开了一种ZnO/CB催化剂的制备方法及其催化高氯酸铵热分解的应用,属于核壳结构纳米催化剂制备技术领域。本发明解决现有单一ZnO作为催化剂催化高氯酸铵热分解过程中,AP的热分解温度高、放热量不集中、分解速率慢的问题。本发明将碳黑放入筛网容器中,再置于ALD沉积腔内,先将沉积腔抽至真空,充入氮气,再升温,然后进行原子层周期沉积生长,沉积100~400个生长周期,得到高性能的催化高氯酸铵热分解纳米材料。该以碳黑为核、片状纳米ZnO为壳,可使高氯酸铵的低温放热峰消失,高温放热峰提前至280~300℃,可用于高氯酸铵类固体推进剂中。
-
公开(公告)号:CN112921299A
公开(公告)日:2021-06-08
申请号:CN202110084963.4
申请日:2021-01-20
Applicant: 哈尔滨工业大学
Abstract: 本发明公开了一种锆包壳表面复合膜层的制备方法,属于锆包壳防护涂层技术领域。本发明解决现有Cr涂层与锆合金基底表面结合不牢的问题。本发明采用原子层沉积技术与磁控溅射技术相结合的手段,在锆合金表面构筑梯度复合涂层,利用原子层沉积技术通过工艺参数来调控Al2O3涂层表面的微纳结构和相结构排列,有效提高其与Cr涂层间的界面结合力,并利用磁控溅射技术在Al2O3涂层上镀致密的Cr涂层,将致密的Cr涂层作为复合涂层最后一道屏障,并依靠氧化产物Cr2O3形成致密的保护膜,能够大幅度阻碍氧扩散至基体,降低包壳管的氧化速率,具有优异的抗高温水蒸气氧化性能。
-
公开(公告)号:CN112675822A
公开(公告)日:2021-04-20
申请号:CN202011357112.4
申请日:2020-11-26
Applicant: 哈尔滨工业大学
IPC: B01J20/26 , B01J20/30 , C09D5/32 , C09D179/04 , C09D7/62 , C23C16/455 , C23C16/40 , B05D7/16
Abstract: 本发明公开了一种高吸收高发射率超黑分子吸附涂层的制备方法,属于超黑材料技术领域。本发明解决现有以沸石分子筛为功能材料的分子污染吸附器存在重量、尺寸大及安装位置不灵活、吸收面积不够广的问题。本发明以大比表面积的炭黑和沸石粉为核,利用原子层沉积技术制备的超薄氧化物膜层为壳的功能粉体作为填料,将其与低挥发的树脂材料混合,涂覆固化后得到分子吸附涂层。该涂层的平均太阳吸收率为95%,半球发射率为91%,使表面层具有消除杂光的性能,且该涂层对邻苯二甲酸脂、有机硅氧烷、正丁烯等有机气体(VOCs)的吸附量≥17.58mg·g‑1。该涂层具有优良空间环境适应性,可满足航天器及卫星成像系统的应用要求。
-
公开(公告)号:CN110747449B
公开(公告)日:2021-01-05
申请号:CN201911134545.0
申请日:2019-11-19
Applicant: 哈尔滨工业大学
IPC: C23C16/40 , C23C16/455
Abstract: 一种用于电子屏幕的自洁疏水膜层及其制备方法,属于自洁疏水薄膜技术领域。本申请解决现有制备自洁疏水膜层方法复杂且对设备和工艺要求高等问题。本发明使用原子层沉积技术在玻璃表面沉积Al2O3和TiO2复合膜层结构。其中原子层间Al‑O‑Ti键、Al‑O‑Ti键能使膜层结合紧密,不仅解决非晶态氧化铝随薄膜厚度的增加产生细小裂纹,从而导致薄膜对水和氧气的阻隔性变差的难题,也解决氧化钛膜层与基底结合力不足的问题。该复合膜层是集可见光区的高透射率、红外区高反射率和高稳定性于一体超薄薄膜,具有良好的疏水特性,疏水角可达到130°~150°,其透过率也可高达90%~95%,在电子屏幕等领域有极为广阔的应用前景。
-
公开(公告)号:CN108516827A
公开(公告)日:2018-09-11
申请号:CN201810630435.2
申请日:2018-06-19
Applicant: 哈尔滨工业大学
IPC: C04B35/495
Abstract: 一种无铅高介电储能密度和高储能效率的陶瓷材料及其制备方法,它涉及陶瓷材料及其制备方法。它是要解决现有铅基陶瓷介电储能材料中铅的环境污染及介电储能效率低的技术问题。本发明的陶瓷材料的化学表达式为(Sr0.5Ba0.5)1+xNb2-xFexO6,其中0<x≤0.05。制法:碳酸锶、碳酸钡、五氧化二铌和三氧化二铁粉末混合后湿法球磨,烘干后放在管式炉预烧,然后再湿法球磨,烘干后加入粘结剂压制成预制体,再将预制体于管式炉中烧结,得到无铅高介电储能密度和高储能效率的陶瓷材料。该陶瓷材料的介电储能效率为833%~93%,介电储能密度为0.59~0.69J/cm3,可用于电气、电子领域。
-
公开(公告)号:CN119735384A
公开(公告)日:2025-04-01
申请号:CN202411935262.7
申请日:2024-12-26
Applicant: 哈尔滨工业大学
IPC: C03C17/42 , C09D183/04 , C09D7/61
Abstract: 本发明公开了一种自清洁‑辐射制冷‑除冰一体化功能涂层及其制备方法和应用,属于功能性防护涂层及其制备技术领域。本发明解决了现有太阳能电池板应用过程中存在的表面易被沙尘与冰雪覆盖,以及夏季电池板过热的问题。本发明首先采用磁控溅射技术制备ITO加热涂层,并使用等离子体对ITO涂层表面进行预处理,引入更多的极性基团后,在其表面旋涂PDMS‑SiO2修饰的溶胶,经固化处理后,使得ITO加热涂层具有疏水性和辐射制冷性质,为了进一步降低涂层表面能,使用全氟硅烷的正己烷溶液降低涂层表面能,获得了一种具有高附着力和高透明度的自清洁/辐射制冷/除冰一体化涂层。本发明制备的涂层广泛应用于太阳能发电等技术领域。
-
公开(公告)号:CN117904597A
公开(公告)日:2024-04-19
申请号:CN202410065588.2
申请日:2024-01-17
Applicant: 哈尔滨工业大学
IPC: C23C16/40 , C23C16/455 , C23C16/56 , H01L31/0216 , H02S40/10 , H01L31/18
Abstract: 本发明公开了一种超疏水自清洁透明超薄涂层及其制备方法和应用,属于功能材料制备技术领域。本发明首先利用原子层沉积技术在基底表面制备一层Al2O3薄膜,然后采用刻蚀方法在Al2O3涂层表面构筑针形阵列微纳结构,在利用ALD技术构筑ZnO涂层实现针形阵列的加固与保护,提高涂层的耐候性和坚固性,最后为了进一步降低涂层表面能,降低灰尘颗粒的粘附性,使用全氟癸基三乙氧基硅烷进行低表面能改性,制备出具有优异超疏水防尘性能和耐候性兼具的Al2O3/ZnO自清洁涂层。此外,本发明提供的制备方法具有工艺简单,原料易得,成本低廉的优点。
-
公开(公告)号:CN116430498B
公开(公告)日:2024-04-16
申请号:CN202310196455.4
申请日:2023-03-03
Applicant: 哈尔滨工业大学
Abstract: 本发明公开了一种光谱选择性低发射率的红外隐身涂层及其制备方法和应用,属于功能薄膜材料及其制备技术领域。本发明解决现有红外隐身涂层存在耐温性差、阻碍辐射散热等技术问题。本申请提供的红外隐身涂层具有周期性多层膜结构,周期性多层膜结构由高折射率材料层和低折射率材料层组成,可实现在红外波段下选择性发射的效果。高折射率材料层和低折射率材料层均为红外波段的优选窗口材料,热匹配性较好,可以有降低涂层在红外波段的温度,残余热应力较小,且各层间具有优异的附着力,无互相渗透现象存在,膜层不易脱落。
-
公开(公告)号:CN117720099A
公开(公告)日:2024-03-19
申请号:CN202310468200.9
申请日:2023-04-27
Applicant: 哈尔滨工业大学
IPC: C01B32/184 , C01B32/194 , C01G9/02 , B82Y30/00 , B82Y40/00 , C09C1/46 , C09C3/06
Abstract: 本发明公开了一种隐身颜料及其制备方法和在柔性多谱段兼容光学隐身涂层中的应用,属于光学功能材料及其制备技术领域。本发明解决了现有传统隐身涂层在可见、红外和微波波段范围内隐身效果不良,且不无法应用于柔性基底的缺点。本发明首先制备了具有优异的可见光与微波吸收性能的石墨烯纳米卷,然后在石墨烯纳米卷表面离散分布沉积氧化锌得到隐身颜料,该隐身颜料现兼具可见‑红外‑微波的隐身性能。此外,本发明利用隐身颜料制备的隐身涂层为柔性涂层,能够贴合不规则物体的表面,适应不同运动,能够承受更多次拉伸、弯曲和压力,具有更高稳定性和可靠性,在柔性涂层材料领域具有极大的应用潜力。
-
公开(公告)号:CN116200705B
公开(公告)日:2023-12-12
申请号:CN202310196453.5
申请日:2023-03-03
Applicant: 哈尔滨工业大学
Abstract: 本发明公开了一种兼容可见光和红外隐身涂层及其制备方法和应用,属于功能薄膜材料及其制备技术领域。本发明解决了现有可见‑红外兼容隐身材料中存在耐温性差、阻碍辐射散热以及耐腐蚀性差等技术问题。本申请通过膜系优化设计,提供了一种具有周期性多层膜结构的涂层,在周期交替叠加结构的最上层设置可见光隐身膜层,该涂层可较好地实现可见光范围内的高吸收率和红外范围内的低发射率。周期性多层膜结构由高折射率材料层和低折射率材料层组成,可以有效的降低涂层在红外波段的温度。此外,涂层厚度不大于2μm,具有质轻的优点,整体涂层厚度较均匀,表面光滑、均匀致密,且无明显孔洞和缺陷,有效提高了涂层的耐腐蚀性能。
-
-
-
-
-
-
-
-
-