-
公开(公告)号:CN103065061A
公开(公告)日:2013-04-24
申请号:CN201310038821.X
申请日:2013-01-31
Applicant: 安徽大学
IPC: G06F19/00
Abstract: 本发明涉及植保信息化技术领域,特别是涉及一种植物病情指数获取与发布装置。该装置包括图像采集辅助模块和移动终端;图像采集辅助模块包括背景板和高度板,图像采集辅助模块用于固定植物叶片,为图像采集发布模块提供采集背景和采集高度;移动终端,用于获取植物病害叶片的高清图像,计算病斑所占叶片面积的百分比,输出病情指数并发布防控建议。本发明提供的植物病情指数获取与发布装置,在规范、统一数据采集流程后,充分发挥移动终端便携、实时性强的优势,科学、准确地为基层植保调查员/技术员提供植物病情指数,为及时制定防控措施、实施喷药管理提供服务。
-
公开(公告)号:CN118298234B
公开(公告)日:2025-04-04
申请号:CN202410454695.4
申请日:2024-04-16
Applicant: 安徽大学
IPC: G06V10/764 , G06V20/10 , G06V10/77 , G06V10/44 , G06V10/42 , G06N3/0464
Abstract: 本发明涉及一种基于光谱‑空间注意力机制和残差网络的高光谱图像分类方法,包括:输入高光谱图像;使用主成分分析进行降维,得到降维后的高光谱图像;进行初步特征提取,得到经特征提取后的图像;得到增强后的图像;得到进一步挖掘空间特征的图像;得到经过自适应校准后的图像;将经过自适应校准后的图像经过全局池化、展平、批归一化和全连接层,得到最终的分类结果。本发明使用深度可分离卷积块,以此实现轻量级、高效率的特征提取;残差SEA注意力模块通过纵向和横向挤压获取全局信息,又通过增强获取局部信息;残差EMA注意力模块能够获取像素间的成对关系,更好地挖掘空间特征;残差SE注意力模块能够自适应校准通道信息,更好获取通道信息。
-
公开(公告)号:CN115063610B
公开(公告)日:2024-03-12
申请号:CN202210596186.6
申请日:2022-05-30
Applicant: 安徽大学
IPC: G06V10/62 , G06T7/62 , G06V10/764 , G06V10/774 , G06T7/11 , G06N5/01 , G06N20/10 , G06N20/20
Abstract: 本发明涉及基于Sentinel‑1、2影像的大豆种植区识别方法及其面积测算方法,与现有技术相比解决了大豆与其他作物光谱相似度高导致其依靠高维特征难以实现种植区识别的缺陷。本发明包括以下步骤:Sentinel‑1、2影像的获取和预处理;时间序列特征提取;支持向量机模型的构建;优选特征子集确定;大豆种植区识别。本发明借助GEE云计算平台,利用线性谐波模型提取大豆生长季内Sentinel‑1、2影像的时间序列特征,然后构造支持向量机模型,同时结合随机森林分类模型及斯皮尔曼相关系数探究大豆识别优选特征子集,最终利用支持向量机模型提取大豆种植区并测算面积。
-
公开(公告)号:CN112232280B
公开(公告)日:2021-12-03
申请号:CN202011217994.4
申请日:2020-11-04
Applicant: 安徽大学
Abstract: 本发明涉及基于自编码器与3D深度残差网络的高光谱图像分类方法,与现有技术相比解决了难以进行遥感高光谱图像分类的缺陷。本发明包括以下步骤:训练样本的获取;待训练高光谱遥感影像数据的预处理;堆栈自编码器神经网络模型的搭建和训练;3D深度残差网络的搭建与训练;待分类高光谱遥感影像的获取;待分类高光谱遥感影像的预处理和降维;高光谱遥感影像分类结果的获得。本发明通过搭建堆栈自编码器神经网络模型,对原始高光谱遥感影像进行降维,剔除了冗余信息;通过设计的3D卷积神经网络引入残差网络模块适当增加网络的深度,建立了3D深度残差网络,更加有效的提取了高光谱遥感影像的空谱联合信息,避免了梯度消失、网络退化的问题。
-
公开(公告)号:CN113705526A
公开(公告)日:2021-11-26
申请号:CN202111041936.5
申请日:2021-09-07
Applicant: 安徽大学
Abstract: 本发明涉及一种高光谱遥感影像分类方法,与现有技术相比克服了有限样本量下高光谱遥感影像特征提取不充分及分类精度不理想的问题。本发明包括以下步骤:高光谱遥感影像的获取和预处理;生成对抗网络的构建和训练;扩充训练样本的获得;构建多尺度残差注意力网络;多尺度残差注意力网络的训练;待分类高光谱遥感影像的获取;高光谱遥感影像分类结果的获得。本发明在训练样本不足的情况下,也能得到较理想的高光谱遥感影像分类结果。
-
公开(公告)号:CN110346312B
公开(公告)日:2021-08-10
申请号:CN201910652829.2
申请日:2019-07-19
Applicant: 安徽大学
Abstract: 本发明涉及基于费氏线性判别和支持向量机技术的冬小麦穗赤霉病识别方法,与现有技术相比解决了遥感领域尚无以单穗为载体进行小麦赤霉病研究的缺陷。本发明包括以下步骤:数据获取;近地高光谱数据预处理;建模特征的选择;费氏线性判别与支持向量机相结合模型的建立;获得小麦穗高光谱识别结果。本发明实现了针对于单穗小麦的赤霉病识别。
-
公开(公告)号:CN112924211A
公开(公告)日:2021-06-08
申请号:CN202110095082.2
申请日:2021-01-25
Applicant: 安徽大学 , 中国科学院空天信息创新研究院
IPC: G01N1/04
Abstract: 本发明公开了一种用于小麦白粉病鉴定的病菌收集装置,包括工作箱、电机、第一夹紧块、第二夹紧块、驱动组件、气缸和收集组件,第一夹紧块设置在工作箱的内部且其底部设有环形挡板,其侧壁上倾斜设有多个呈条形的第一通口,每个第一通口内均设有第一夹紧组件,第二夹紧块设置在第一夹紧块的正下方且其侧壁上设有多个第二通口,每个第二通口内均设有第二夹紧组件,驱动组件设置在工作箱的内部用于带动第一夹紧块和第二夹紧块同步转动,气缸倾斜固定在工作箱的侧壁上且其活塞杆上垂直固定有平行夹爪,每个夹爪上均设有清扫组件。本发明可以同时将小麦叶片两面的病菌收集进行收集,收集效率高,而且能批量对多个小麦叶片上的病菌进行收集。
-
公开(公告)号:CN112488050A
公开(公告)日:2021-03-12
申请号:CN202011486562.3
申请日:2020-12-16
Applicant: 安徽大学 , 中国科学院空天信息创新研究院
Abstract: 本发明公开了一种结合颜色与纹理的航拍影像场景分类方法,包括:采用基于HSV颜色空间的颜色直方图,获取航拍场景图像颜色特征向量;采用局部二值模式LBP,获取航拍场景图像的局部纹理特征向量;采用梯度‑灰度共生矩阵GLGCM,获取航拍场景图像的全局纹理特征向量;将颜色特征向量、局部纹理特征向量、全局纹理特征向量,形成新特征向量矩阵;将新特征向量进行标准化处理后输入支持向量机SVM分类器进行训练,获得分类结果。该分类方法有效的提高了应用低级视觉特征时的分类精度。
-
公开(公告)号:CN112232280A
公开(公告)日:2021-01-15
申请号:CN202011217994.4
申请日:2020-11-04
Applicant: 安徽大学
Abstract: 本发明涉及基于自编码器与3D深度残差网络的高光谱图像分类方法,与现有技术相比解决了难以进行遥感高光谱图像分类的缺陷。本发明包括以下步骤:训练样本的获取;待训练高光谱遥感影像数据的预处理;堆栈自编码器神经网络模型的搭建和训练;3D深度残差网络的搭建与训练;待分类高光谱遥感影像的获取;待分类高光谱遥感影像的预处理和降维;高光谱遥感影像分类结果的获得。本发明通过搭建堆栈自编码器神经网络模型,对原始高光谱遥感影像进行降维,剔除了冗余信息;通过设计的3D卷积神经网络引入残差网络模块适当增加网络的深度,建立了3D深度残差网络,更加有效的提取了高光谱遥感影像的空谱联合信息,避免了梯度消失、网络退化的问题。
-
公开(公告)号:CN107944426B
公开(公告)日:2020-06-02
申请号:CN201711336069.1
申请日:2017-12-14
Applicant: 安徽大学
Abstract: 本发明涉及基于纹理滤波和二维光谱特征空间判别相结合的小麦叶片白粉病斑标记方法,与现有技术相比解决了难以统计小麦叶片白粉病害的缺陷。本发明包括以下步骤:源数据的获取和预处理;纹理滤波指数的获取;提取潜在的病害像元;提取病害像元并标记。本发明基于地面高光谱成像仪获取的“图谱合一”影像数据,自动、定量提取叶片上的白粉病斑像元,能够快速获取叶片精细严重度。
-
-
-
-
-
-
-
-
-