基于光谱-空间注意力机制和残差网络的高光谱图像分类方法

    公开(公告)号:CN118298234B

    公开(公告)日:2025-04-04

    申请号:CN202410454695.4

    申请日:2024-04-16

    Applicant: 安徽大学

    Abstract: 本发明涉及一种基于光谱‑空间注意力机制和残差网络的高光谱图像分类方法,包括:输入高光谱图像;使用主成分分析进行降维,得到降维后的高光谱图像;进行初步特征提取,得到经特征提取后的图像;得到增强后的图像;得到进一步挖掘空间特征的图像;得到经过自适应校准后的图像;将经过自适应校准后的图像经过全局池化、展平、批归一化和全连接层,得到最终的分类结果。本发明使用深度可分离卷积块,以此实现轻量级、高效率的特征提取;残差SEA注意力模块通过纵向和横向挤压获取全局信息,又通过增强获取局部信息;残差EMA注意力模块能够获取像素间的成对关系,更好地挖掘空间特征;残差SE注意力模块能够自适应校准通道信息,更好获取通道信息。

    基于光谱-空间注意力机制和残差网络的高光谱图像分类方法

    公开(公告)号:CN118298234A

    公开(公告)日:2024-07-05

    申请号:CN202410454695.4

    申请日:2024-04-16

    Applicant: 安徽大学

    Abstract: 本发明涉及一种基于光谱‑空间注意力机制和残差网络的高光谱图像分类方法,包括:输入高光谱图像;使用主成分分析进行降维,得到降维后的高光谱图像;进行初步特征提取,得到经特征提取后的图像;得到增强后的图像;得到进一步挖掘空间特征的图像;得到经过自适应校准后的图像;将经过自适应校准后的图像经过全局池化、展平、批归一化和全连接层,得到最终的分类结果。本发明使用深度可分离卷积块,以此实现轻量级、高效率的特征提取;残差SEA注意力模块通过纵向和横向挤压获取全局信息,又通过增强获取局部信息;残差EMA注意力模块能够获取像素间的成对关系,更好地挖掘空间特征;残差SE注意力模块能够自适应校准通道信息,更好获取通道信息。

    基于光谱-空间自注意力和Transformer网络的高光谱图像分类方法

    公开(公告)号:CN117315481B

    公开(公告)日:2025-03-21

    申请号:CN202311369853.8

    申请日:2023-10-23

    Applicant: 安徽大学

    Abstract: 本发明涉及一种基于光谱‑空间自注意力和Transformer网络的高光谱图像分类方法,包括:输入高光谱图像;使用主成分分析进行降维,得到降维后的高光谱图像;通过CBAM模块进行初步的光谱‑空间特征学习;进行初步特征学习;再经过光谱注意力模块得到光谱特征,最后继续挖掘光谱特征;输入空间注意力模块;输入Transformer模块,对全局特征进行学习;将经过全局特征学习的高光谱图像,最后经过全局池化、展平、批归一化和线性层,得到最终分类结果。本发明通过对高光谱图像作为研究对象,使用二维卷积能够在保持计算效率的同时减少计算量和节约成本;实现轻量级、高效率的特征提取和通道选择,提高了中心特征向量识别的准确性,增强了空间提取能力。

    基于光谱-空间自注意力和Transformer网络的高光谱图像分类方法

    公开(公告)号:CN117315481A

    公开(公告)日:2023-12-29

    申请号:CN202311369853.8

    申请日:2023-10-23

    Applicant: 安徽大学

    Abstract: 本发明涉及一种基于光谱‑空间自注意力和Transformer网络的高光谱图像分类方法,包括:输入高光谱图像;使用主成分分析进行降维,得到降维后的高光谱图像;通过CBAM模块进行初步的光谱‑空间特征学习;进行初步特征学习;再经过光谱注意力模块得到光谱特征,最后继续挖掘光谱特征;输入空间注意力模块;输入Transformer模块,对全局特征进行学习;将经过全局特征学习的高光谱图像,最后经过全局池化、展平、批归一化和线性层,得到最终分类结果。本发明通过对高光谱图像作为研究对象,使用二维卷积能够在保持计算效率的同时减少计算量和节约成本;实现轻量级、高效率的特征提取和通道选择,提高了中心特征向量识别的准确性,增强了空间提取能力。

Patent Agency Ranking