一种基于异构分离卷积核的模型压缩与加速方法

    公开(公告)号:CN111612145A

    公开(公告)日:2020-09-01

    申请号:CN202010442785.3

    申请日:2020-05-22

    Abstract: 本发明针对卷积特征图存在大量的相似性这一现象,提出了SPConv,一种基于异构分离卷积核的模型压缩与加速方法。SPConv将输入特征图分为“有代表性的通道”和“冗余的通道”两部分,并利用计算量较大但是特征提取能力强的卷积核来提取“有代表性的通道”中存有的重要本质信息;而利用计算开销非常小的卷积核来提取“冗余通道”中隐藏的微小细节信息。然后二者再通过本发明设计的“无参数量的特征融合方法”进行特征融合。本发明设计的SPConv是一个即插即用的卷积模块,可以在当前网络架构中直接进行替代。在图片分类和目标检测数据数据集上的实验表明本发明保证了在参数量和浮点数计算量大幅下降的情况下,其模型性能和在GPU上的推理速度均超过了基准方法。

    基于级联卷积神经网络的目标检测方法

    公开(公告)号:CN107590489A

    公开(公告)日:2018-01-16

    申请号:CN201710899578.9

    申请日:2017-09-28

    Abstract: 本发明涉及一种基于级联卷积神经网络的目标检测方法,其主要技术特点是:利用卷积神经网络提取图像特征,并使用区域候选网络生成一定数量的目标候选框;使用优化网络对候选框进行优化;将优化后的目标候选框输入含多分类器的检测网络中,产生初步的检测结果;利用二值分类器对每一类目标进行再检测,排除错误目标得到最终精确的检测结果。本发明利用深度卷积网络对目标的强大的表示能力,构建了用于目标检测的级联卷积神经网络,提出了一种新的优化目标候选框的方法和排除错误检测样本的策略,提高了算法的检测精度,能够获得了良好的目标检测结果。

    基于全卷积网络的多特征融合的目标检测方法

    公开(公告)号:CN107563381A

    公开(公告)日:2018-01-09

    申请号:CN201710816619.3

    申请日:2017-09-12

    Abstract: 本发明设计了一种基于全卷积网络的多特征融合的目标检测方法,其主要技术特点是:搭建具有六个卷积层组的全卷积神经网络;利用卷积神经网络的前五组卷积层提取图像特征,并将其输出进行融合,形成融合特征图;对融合后的特征图进行卷积处理,直接产生固定数目的不同大小的目标边框;计算卷积神经网络生成的目标边框与真实边框之间的分类误差与定位误差,利用随机梯度下降法降低训练误差,得到最终训练模型的参数,最后进行测试得到目标检测结果。本发明利用了深度卷积网络对目标的强大的表示能力,构建了用于目标检测的全卷积神经网络,提出了新的融合特征方法,提高了算法的检测速度和精度,获得了良好的目标检测结果。

    一种基于堆结构扩张软件定义网络的方法

    公开(公告)号:CN106713136A

    公开(公告)日:2017-05-24

    申请号:CN201611056675.3

    申请日:2016-11-25

    Abstract: 本发明提供一种基于堆结构扩张软件定义网络的方法,所述方法包括:步骤1,将网络系统中的数据层抽象为多层次的斐波那契堆结构;步骤2,在所述得到的多层次斐波那契堆中依照自上而下顺序,利用双权重扩展Dijkstra路由算法解析得到最短路由路径。本申请有效的化简了软件定义网络的扩展过程,并结合堆结构改良了网络中的最短路由算法,同时有效的降低了各节点运算设备的负担。

    一种智能手机室内定位方法

    公开(公告)号:CN104215238A

    公开(公告)日:2014-12-17

    申请号:CN201410415407.0

    申请日:2014-08-21

    CPC classification number: G01C21/18

    Abstract: 本发明涉及一种智能手机室内定位方法,其技术特点是:步骤1、在行人行进过程中,利用智能手机内置的加速度传感器和陀螺仪进行行人航位推算,包括判断行人运动状态、计算发生的步伐数、计算行进距离并推算行人方向变化,得到推算的位置信息;步骤2、建立室内环境磁场地图,利用室内环境磁场地图和磁场传感器实时获得的信息,通过粒子滤波算法进行磁场匹配,进而对推算的位置信息进行校正,得到行人的最终位置。本发明从抵御多种手持手机的方法和不同步伐长度处理两方面来提升室内定位的鲁棒性;从提高磁场匹配判决权重的稳定性和降低系统累计误差两方面来提高匹配精度,避免长时间累积误差的出现;从减少外部设备数量上来降低系统复杂度。

    基于图像修复和矢量预测算子的帧内预测视频编码方法

    公开(公告)号:CN102595140B

    公开(公告)日:2014-05-28

    申请号:CN201210060588.0

    申请日:2012-03-09

    Abstract: 本发明涉及一种基于图像修复和矢量预测算子的帧内预测视频编码方法,其技术特点是:(1)计算当前块基于HEVC中传统帧内预测模式的率失真代价值RD1;(2)计算当前块基于拉普拉斯方程图像修复方法的帧内预测模式的率失真代价值RD2,若RD2小于RD1,则计算当前块基于全变分模型图像修复方法的帧内预测模式的率失真代价值RD2;(3)计算当前块基于矢量预测算子的帧内预测模式的率失真代价值RD3;(4)编码端根据RD1、RD2和RD3的比较结果,计算得到当前块的预测像素值并对当前块进行预测、压缩和编码。本发明设计合理,提高了已有的基于图像修复的帧内预测模式的预测准确性,能够在编解码后视频质量基本不变的情况下,降低编码码率,从而提高视频编码的压缩效率。

Patent Agency Ranking