一种检测大肠杆菌的电化学传感器及其制备方法

    公开(公告)号:CN104407132B

    公开(公告)日:2016-05-25

    申请号:CN201410576627.1

    申请日:2014-10-24

    Applicant: 济南大学

    Abstract: 本发明涉及传感器技术领域,特别涉及一种检测大肠杆菌的电化学传感器,从内到外依次为电极、普鲁士蓝-碳纳米管-纳米金复合物层、大肠杆菌抗体层、牛血清白蛋白封闭层。制备方法:制备普鲁士蓝-碳纳米管-纳米金复合物,滴加到经过处理的电极表面,室温干燥,得到普鲁士蓝-碳纳米管-纳米金复合物层;在普鲁士蓝-碳纳米管-纳米金复合物层上滴加无标记的大肠杆菌抗体,干燥,得到大肠杆菌抗体层;在大肠杆菌抗体层外包覆牛血清白蛋白封闭层。制备方法简单,性能稳定,电极的重复性好,适用于食品安全中大肠杆菌的检测和生物传感器产业化的实际应用;可实现对食品中大肠杆菌的快速在线检测,检出限为3.4×10cfu mL-1。

    一种检测大肠杆菌的电化学传感器及其制备方法

    公开(公告)号:CN104407132A

    公开(公告)日:2015-03-11

    申请号:CN201410576627.1

    申请日:2014-10-24

    Applicant: 济南大学

    Abstract: 本发明涉及传感器技术领域,特别涉及一种检测大肠杆菌的电化学传感器,从内到外依次为电极、普鲁士蓝-碳纳米管-纳米金复合物层、大肠杆菌抗体层、牛血清白蛋白封闭层。制备方法:制备普鲁士蓝-碳纳米管-纳米金复合物,滴加到经过处理的电极表面,室温干燥,得到普鲁士蓝-碳纳米管-纳米金复合物层;在普鲁士蓝-碳纳米管-纳米金复合物层上滴加无标记的大肠杆菌抗体,干燥,得到大肠杆菌抗体层;在大肠杆菌抗体层外包覆牛血清白蛋白封闭层。制备方法简单,性能稳定,电极的重复性好,适用于食品安全中大肠杆菌的检测和生物传感器产业化的实际应用;可实现对食品中大肠杆菌的快速在线检测,检出限为3.4×10cfumL-1。

    用于海产品中有机砷化物检测的基于核酸适配子的分子印迹膜电极及其制备方法

    公开(公告)号:CN102590307A

    公开(公告)日:2012-07-18

    申请号:CN201210016432.2

    申请日:2012-01-19

    Applicant: 济南大学

    Abstract: 本发明公开了一种用于海产品中有机砷化物检测的基于核酸适配子的分子印迹膜电极及制备方法,分子印迹膜电极包括电极基片,电极基片上有第一电极基体、第二电极基体和第三电极基体;第一电极基体由工作电极与第一接线端子相连成一体;第二电极基体由对电极和第二接线端子相连成一体;第三电极基体由参比电极和第三接线端子相连成一体;所述工作电极工作电极表面涂覆有反应层,所述反应层由通过表面修饰技术固定在工作电极上的能与海产品中有机砷化物发生特异分子识别生化反应的核酸适配子分子印迹聚合物组成。本发明制备方法简单,性能稳定,电极的重复性好,适用于海产品中有机砷化物检测生物传感器产业化的实际应用。

    基于核酸适配子的海产品中有机砷化物分子印迹膜基片及其制备方法和应用

    公开(公告)号:CN102519820A

    公开(公告)日:2012-06-27

    申请号:CN201110449855.9

    申请日:2011-12-29

    Applicant: 济南大学

    Abstract: 本发明公开了基于核酸适配子的海产品中有机砷化物分子印迹膜基片及其制备方法和应用,以基于核酸适配子的海产品中有机砷化物分子印迹聚合物作为识别元件在所述金石英体基片表面形成反应层;所述基于核酸适配子的海产品中有机砷化物分子印迹聚合物是将海产品中有机砷化物模板分子、核酸适配子功能单体、交联剂、致孔剂、引发剂和有机溶剂按摩尔比为0.1~2.5∶3∶0.1~3∶30~60∶0.01~0.15∶1.0~10的比例聚合而成。将表面修饰技术应用到基于核酸适配子的海产品中有机砷化物分子印迹膜基片的制备当中,使得基于核酸适配子的海产品中有机砷化物分子印迹膜基片的制备具有可控性,提高了基片的灵敏度和准确性。

    一种基于铁蛋白的共振能量转移纳米结构的制备方法

    公开(公告)号:CN110470827A

    公开(公告)日:2019-11-19

    申请号:CN201910787982.6

    申请日:2019-08-26

    Applicant: 济南大学

    Abstract: 本发明涉及一种基于铁蛋白的共振能量转移纳米结构的制备方法,属于新型纳米材料领域;本发明利用pH控制铁蛋白解离/重组的特性,首次采用三步法实现三(2-苯基吡啶)合铱Ir(ppy)3分子与纳米金Au NPs在铁蛋白表面的均一嵌合组装,制得一种以Ir(ppy)3为能量供体、以Au NPs为能量受体的具有共振能量转移特性的Ir(ppy)3-铁蛋白-Au三维杂化纳米结构;由于Ir(ppy)3的电致化学发光ECL激发光谱与Au NPs的紫外吸收光谱具有很好的光谱重叠,且二者在铁蛋白表面的距离小于10 nm,使得二者之间可以发生高效的电致化学发光-共振能量转移ECL-RET;本发明首次在铁蛋白表面建立了一种基于Ir(ppy)3与Au NPs之间共振能量转移的新研究模型,为ECL-RET的理论研究提供了一种新的思路。

    用于卡那霉素检测的电化学适体电极及其制备方法

    公开(公告)号:CN104237344A

    公开(公告)日:2014-12-24

    申请号:CN201410442491.5

    申请日:2014-09-02

    Applicant: 济南大学

    Abstract: 本发明涉及检测用传感器技术领域,特别涉及一种用于卡那霉素检测的电化学适体电极,在玻碳电极上自下而上依次修饰有石墨烯-聚苯胺复合物、聚酰胺-胺型树枝状高分子-金纳米复合物、卡那霉素抗体,最后封闭电极表面的为BSA和10个腺嘌呤碱基的单链DNA。制备方法简单,性能稳定,电极的重复性好,适用于食品安全中卡那霉素的检测和生物传感器产业化的实际应用。制作电极的工艺成本低,适用于产业化中价廉的要求。以玻碳电极为固定载体固定基于核酸适配体的夹心型电化学传感系统,可实现对食品中卡那霉素的快速在线检测,检出限为4.6×10-6μgmL-1。

    一种检测大肠杆菌的电化学免疫传感器的制备方法及应用

    公开(公告)号:CN103822949A

    公开(公告)日:2014-05-28

    申请号:CN201410015673.4

    申请日:2014-01-14

    Applicant: 济南大学

    Abstract: 本发明提供了一种基于电化学生物传感器检测大肠杆菌的方法。本研究将纳米技术、生物技术与电化学传感分析技术三者有机结合,首先制备了石墨烯、金纳米粒子、EDOT的复合物,修饰于电极上,进行条件的优化后,在最佳条件下进行后续的检测,将抗原1先修饰于电极上,然后将不同浓度的大肠杆菌100℃灭活后也修饰于电极上,最后将HRP标记的抗原2修饰于电极上,我们发现该传感器检测到的电流和大肠杆菌浓度之间存在线性的对应关系,从而实现了大肠杆菌的检测。我们发现,基于此方法制备的电化学生物传感器具有选择性强,灵敏度高,操作简单快速等优点。

    一种基于铁蛋白的共振能量转移纳米结构的制备方法

    公开(公告)号:CN110470827B

    公开(公告)日:2023-01-13

    申请号:CN201910787982.6

    申请日:2019-08-26

    Abstract: 本发明涉及一种基于铁蛋白的共振能量转移纳米结构的制备方法,属于新型纳米材料领域;本发明利用pH控制铁蛋白解离/重组的特性,首次采用三步法实现三(2‑苯基吡啶)合铱Ir(ppy)3分子与纳米金Au NPs在铁蛋白表面的均一嵌合组装,制得一种以Ir(ppy)3为能量供体、以Au NPs为能量受体的具有共振能量转移特性的Ir(ppy)3‑铁蛋白‑Au三维杂化纳米结构;由于Ir(ppy)3的电致化学发光ECL激发光谱与Au NPs的紫外吸收光谱具有很好的光谱重叠,且二者在铁蛋白表面的距离小于10 nm,使得二者之间发生高效的电致化学发光‑共振能量转移ECL‑RET;本发明首次在铁蛋白表面建立了一种基于Ir(ppy)3与Au NPs之间共振能量转移的新研究模型,为ECL‑RET的理论研究提供了一种新的思路。

    基于核酸适配体检测氨苄青霉素的生物传感器及其制备方法

    公开(公告)号:CN104459130A

    公开(公告)日:2015-03-25

    申请号:CN201410504740.9

    申请日:2014-09-26

    Applicant: 济南大学

    CPC classification number: G01N33/573

    Abstract: 本发明涉及生物传感器技术领域,特别涉及基于核酸适配体检测氨苄青霉素的生物传感器。为了解决以上现有技术中检测氨苄青霉素的方法特异性和灵敏度都比较低、成本高的问题。一种基于核酸适配体检测氨苄青霉素的生物传感器,在电极上依次修饰有capture probe层、HAP和MB probe层。制备方法:对电极进行预处理;将capture probe层修饰到电极表面;将HAP和MB probe层修饰到电极表面。利用了核酸适配体的特异型识别,利用氨苄青霉素的适体作为识别物质实现了对目标物氨苄青霉素的高特异性检测;利用聚合酶的聚合作用,实现了目标物的循环利用,起到了信号放大的作用。

Patent Agency Ranking