-
公开(公告)号:CN118097660A
公开(公告)日:2024-05-28
申请号:CN202410044725.4
申请日:2024-01-11
Applicant: 桂林电子科技大学 , 南宁桂电电子科技研究院有限公司
IPC: G06V20/69 , G06V10/44 , G06V10/74 , G06V10/80 , G06V10/82 , G06N3/0455 , G06N3/0464 , G06N3/048 , G06N3/084 , G06N3/092
Abstract: 本发明公开了一种基于相似注意力机制的乳腺癌细胞核分割方法及系统,所述方法包括:1)采用了传统数据增强方法来增加数据的多样性;2)采用了相似注意力机制以加强细节特征提取;通过膨胀卷积来扩大感受野并设置锯齿状膨胀系数消除空洞效应;使用密集连接和多分辨率跳跃连接实现层与层之间的连接和多尺度融合;添加Dropout层防止过拟合;3)在对乳腺癌细胞核精确分割的同时,对其进行细胞核计数、形态提取,为临床诊断乳腺癌分级提供基础;本发明能够精确分割乳腺癌细胞核,解决乳腺癌细胞核形态多样,细胞核边缘粘连严重难以分割等问题,可以有效地辅助医生进行乳腺癌的早期诊断和治疗。
-
公开(公告)号:CN117934491A
公开(公告)日:2024-04-26
申请号:CN202410110644.X
申请日:2024-01-26
Applicant: 桂林电子科技大学 , 南宁桂电电子科技研究院有限公司
IPC: G06T7/10 , G06V10/764 , G06V10/762 , G06V10/778
Abstract: 本发明涉及医学图像分割技术领域,特别是涉及一种基于半监督深度学习的腺体分割方法,包括:获取待分割腺体图像;将所述待分割腺体图像输入预设的分割模型中,获取分割预测图,其中,所述分割模型基于训练集训练获得,所述训练集包括有标注的结直肠癌腺体图像和乳腺癌腺体图像,无标注的结直肠癌腺体图像和乳腺癌腺体图像,所述分割模型包括教师模型、学生模型和教师助理模型,所述教师模型、学生模型和教师助理模型的主干网络均采用DeepLabv3+网络构建。本发明能够有效地提升结直肠癌和乳腺癌腺体图像的分割精度。
-
公开(公告)号:CN114973244B
公开(公告)日:2023-04-11
申请号:CN202210659966.0
申请日:2022-06-12
Applicant: 桂林电子科技大学
IPC: G06V20/69 , G06V10/764 , G06V10/80 , G06T7/00
Abstract: 本发明公开了一种乳腺癌H&E染色病理图像有丝分裂自动识别系统和方法,属于数字图像处理技术技术领域,包括:输入图像预处理模块:对原始图片进行按照预定的patch尺寸切割,并通过图片翻转、旋转等方式进行数据增强;分割模块:通过在训练集中裁剪patches训练一个分割网络,将测试集数据按相应尺寸切割并送入分割网络,得到patch级的分割结果,然后将分割后结果按照其在预处理阶段截取的patch坐标信息来重建出属于原始尺寸的图像。该乳腺癌H&E染色病理图像有丝分裂自动识别系统和方法,对于准确地分割和分类乳腺癌有丝分裂的细胞,特别是样本细胞数量稀少,特征复杂的,具有重要意义。
-
公开(公告)号:CN118015617A
公开(公告)日:2024-05-10
申请号:CN202410146393.0
申请日:2024-02-01
Applicant: 桂林电子科技大学 , 南宁桂电电子科技研究院有限公司
IPC: G06V20/69 , G06V10/25 , G06V10/764 , G06V10/82 , G06V10/80 , G06V10/776 , G06N3/0464 , G06N3/045 , G06N3/0499 , G06N3/084
Abstract: 本发明公开了基于目标检测的乳腺癌病理图像有丝分裂细胞核识别方法,包括:将乳腺癌有丝分裂细胞核图像输入目标检测网络,筛选有丝分裂细胞核的候选框及所述候选框对应的第一置信度;对筛选后的候选框进行窗口重定位,过滤检测阶段产生的劣质假阳性,并重新定位有丝分裂细胞核的中心位置,获取过滤后的候选框及第二置信度;将过滤后的候选框输入分类网络,输出最终候选框及最终目标置信度,其中,最终目标置信度通过第二置信度和分类网络置信度加权获得。本发明通过在检测阶段之后加入窗口重定位模块,减少候选框边界周围的低质量预测,有利于产生更一致的检测结果。
-
公开(公告)号:CN117036811A
公开(公告)日:2023-11-10
申请号:CN202311020950.6
申请日:2023-08-14
Applicant: 桂林电子科技大学
IPC: G06V10/764 , G06V10/40 , G06V10/80 , G06V10/82 , G06V10/25 , G06V10/26 , G06N3/042 , G06N3/0464 , G06N3/045 , G06N3/08
Abstract: 本发明公开了一种基于双分支融合网络的病理图像智能分类系统及方法,包括:将病理图像进行图像预处理,获得病理图像的图数据结构和固定大小的病理图像;将所述病理图像的图数据结构和固定大小的病理图像进行特征提取,获得包含病理图像类别信息的图特征和包含病理图像类别信息的深度卷积特征;将所述包含病理图像类别信息的图特征和包含病理图像类别信息的深度卷积特征进行特征融合,获得病理图像的最终分类结果。模型主要针对乳腺癌病理图像分类进行设计,在BRACS上取得了目前最佳的分类性能67.03%。同时模型也在直肠癌CRA数据集上进行验证,同样取得了目前最佳的性能97.33%。
-
公开(公告)号:CN116894948A
公开(公告)日:2023-10-17
申请号:CN202310970392.3
申请日:2023-08-03
Applicant: 桂林电子科技大学
IPC: G06V10/26 , G06V10/764 , G06N3/0464 , G06N3/08 , G06V10/774 , G06V10/82 , G06V10/30
Abstract: 本发明公开了一种基于不确定性引导的半监督图像分割方法,包括如下步骤1)数据预处理;2)经过两个对等分割网络得到预测结果;3)不确定性估计、求动态权重;4)优化模型训练。这种方法能实现抗噪性训练,减少伪标注噪声给模型带来的分割性能下降的问题。
-
公开(公告)号:CN116452480A
公开(公告)日:2023-07-18
申请号:CN202310397002.8
申请日:2023-04-14
Applicant: 桂林电子科技大学
Abstract: 本发明是属于图像融合技术领域,具体涉及一种基于卷积与自注意力机制结合的红外与可见光图像融合方法;所述方法包括编码器、融合策略和解码器三个阶段:在编码器阶段,将可将光图像和红外图像分别输入到基于卷积和自注意力机制结合的模块,得到图像特征;在融合策略阶段,将上述得到的特征在Y通道上进行融合,得到融合图像;最后通过级联的解码器重建融合图像,得到最终的红外与可见光融合图像。本发明通过建立一个图像融合的模型,得到红外与可见光融合图像,该图像不仅包含显著目标和丰富的纹理信息,而且有助于高级视觉任务的完成。
-
公开(公告)号:CN114973244A
公开(公告)日:2022-08-30
申请号:CN202210659966.0
申请日:2022-06-12
Applicant: 桂林电子科技大学
IPC: G06V20/69 , G06V10/764 , G06V10/80 , G06T7/00
Abstract: 本发明公开了一种乳腺癌H&E染色病理图像有丝分裂自动识别系统和方法,属于数字图像处理技术技术领域,包括:输入图像预处理模块:对原始图片进行按照预定的patch尺寸切割,并通过图片翻转、旋转等方式进行数据增强;分割模块:通过在训练集中裁剪patches训练一个分割网络,将测试集数据按相应尺寸切割并送入分割网络,得到patch级的分割结果,然后将分割后结果按照其在预处理阶段截取的patch坐标信息来重建出属于原始尺寸的图像。该乳腺癌H&E染色病理图像有丝分裂自动识别系统和方法,对于准确地分割和分类乳腺癌有丝分裂的细胞,特别是样本细胞数量稀少,特征复杂的,具有重要意义。
-
公开(公告)号:CN113408593A
公开(公告)日:2021-09-17
申请号:CN202110613678.7
申请日:2021-06-05
Applicant: 桂林电子科技大学 , 桂林笑微酒店管理有限公司
Abstract: 本发明公开了一种基于改进的ResNeSt卷积神经网络模型的糖尿病性视网膜病变图像分类方法。该方法为:首先从医院获取病变图像;对图像进行预处理,眼科医生手动标注,划分数据集;再搭建实验所需的深度学习服务器平台,然后编写python代码;在ResNeSt卷积神经网络中引入OctConv和SPConv两种轻量且高效的卷积操作,并引入Warm Restart和余弦退火的学习率调解机制;采用ILSVRC2012数据集对改进的ResNeSt网络进行预训练,将得到的模型迁移到预处理后的数据集上进行微调;载入测试集,测试训练好的ResNeSt卷积神经网络分类模型,得出分类的结果,看各分类指标是否符合要求。本发明实现了对糖尿病性视网膜病变图像分类方法,利用改进的ResNeSt模型,有较高的运行效率和分类准确度,应用价值很高。
-
公开(公告)号:CN117746201A
公开(公告)日:2024-03-22
申请号:CN202311850353.6
申请日:2023-12-29
Applicant: 桂林电子科技大学
IPC: G06V10/80 , G06V10/766 , G06V10/25 , G06V10/82 , G06N3/0455 , G06N3/0464 , G06N3/084
Abstract: 本发明公开了一种基于交叉Transformer和MLIF的多模态融合生存预后方法,所述方法包括以下步骤:获取影像和病理切片数据集;对数据集进行预处理并标注感兴趣区域;对其进行手工特征提取;划分训练集和测试集;将所述影像组学特征和病理特征输入至预设的多模态融合模块进行二阶段的训练;其中,第一阶段的训练是采用交叉Transformer增强不同特征间的交互,利用多模态低秩交互融合模块(MLIF)将不同特征进行全面高效整合,生成多模态融合特征;第二阶段的训练是根据多模态融合特征,训练一个用于生存预后的回归网络,该网络的预测结果为最终结果。本发明通过端到端整合多模态数据揭示了不同模态数据之间的关联和互补性,提高了患者的治疗效果和生存率。
-
-
-
-
-
-
-
-
-