一种红外与可见光图像融合的方法

    公开(公告)号:CN116452480A

    公开(公告)日:2023-07-18

    申请号:CN202310397002.8

    申请日:2023-04-14

    Abstract: 本发明是属于图像融合技术领域,具体涉及一种基于卷积与自注意力机制结合的红外与可见光图像融合方法;所述方法包括编码器、融合策略和解码器三个阶段:在编码器阶段,将可将光图像和红外图像分别输入到基于卷积和自注意力机制结合的模块,得到图像特征;在融合策略阶段,将上述得到的特征在Y通道上进行融合,得到融合图像;最后通过级联的解码器重建融合图像,得到最终的红外与可见光融合图像。本发明通过建立一个图像融合的模型,得到红外与可见光融合图像,该图像不仅包含显著目标和丰富的纹理信息,而且有助于高级视觉任务的完成。

    一种基于改进的ResNeSt卷积神经网络模型的糖尿病性视网膜病变图像分类方法

    公开(公告)号:CN113408593A

    公开(公告)日:2021-09-17

    申请号:CN202110613678.7

    申请日:2021-06-05

    Abstract: 本发明公开了一种基于改进的ResNeSt卷积神经网络模型的糖尿病性视网膜病变图像分类方法。该方法为:首先从医院获取病变图像;对图像进行预处理,眼科医生手动标注,划分数据集;再搭建实验所需的深度学习服务器平台,然后编写python代码;在ResNeSt卷积神经网络中引入OctConv和SPConv两种轻量且高效的卷积操作,并引入Warm Restart和余弦退火的学习率调解机制;采用ILSVRC2012数据集对改进的ResNeSt网络进行预训练,将得到的模型迁移到预处理后的数据集上进行微调;载入测试集,测试训练好的ResNeSt卷积神经网络分类模型,得出分类的结果,看各分类指标是否符合要求。本发明实现了对糖尿病性视网膜病变图像分类方法,利用改进的ResNeSt模型,有较高的运行效率和分类准确度,应用价值很高。

    一种基于弱监督和半监督的细胞核分割方法

    公开(公告)号:CN119600597A

    公开(公告)日:2025-03-11

    申请号:CN202411638278.1

    申请日:2024-11-16

    Abstract: 本发明公开了一种基于弱监督和半监督的细胞核分割方法,包括以下步骤:S1、选取任意乳腺癌病理图像库中的病理图像及其部分点标签作为待检测图像,使用扩展的高斯滤波算法对标记点进行初始训练;然后采用背景传播的方法进行自训练,通过不断迭代更新,获取较为精准的细胞核检测结果,并利用课程学习策略,先用简单的样本对模型进行训练,然后随着模型的改进逐渐增加样本的难度,以增强模型的学习能力;S2、使用S1得到的完整点标签生成三种弱标签,包括:1)生成Voronoi标签。本发明降低了对模型的要求,能够利用有限的弱标签数据,又能够保持较高分割准确性,同时也提高了分隔的效率,有利于对细胞核的边缘和形状信息的处理。

Patent Agency Ranking