基于交叉Transformer和MLIF的多模态融合生存预后方法

    公开(公告)号:CN117746201A

    公开(公告)日:2024-03-22

    申请号:CN202311850353.6

    申请日:2023-12-29

    Abstract: 本发明公开了一种基于交叉Transformer和MLIF的多模态融合生存预后方法,所述方法包括以下步骤:获取影像和病理切片数据集;对数据集进行预处理并标注感兴趣区域;对其进行手工特征提取;划分训练集和测试集;将所述影像组学特征和病理特征输入至预设的多模态融合模块进行二阶段的训练;其中,第一阶段的训练是采用交叉Transformer增强不同特征间的交互,利用多模态低秩交互融合模块(MLIF)将不同特征进行全面高效整合,生成多模态融合特征;第二阶段的训练是根据多模态融合特征,训练一个用于生存预后的回归网络,该网络的预测结果为最终结果。本发明通过端到端整合多模态数据揭示了不同模态数据之间的关联和互补性,提高了患者的治疗效果和生存率。

    一种HE染色病理图像数据扩充与增强的方法

    公开(公告)号:CN114387264B

    公开(公告)日:2023-04-18

    申请号:CN202210054661.7

    申请日:2022-01-18

    Abstract: 本发明属于医学图像技术领域,具体涉及一种HE染色病理图像数据扩充与增强的方法;所述方法包括模型训练和模型推理两个阶段:在模型训练阶段,对病理图像数据集进行划分,得到训练集、验证集及测试集;构建基于生成对抗网络的深度学习模型;将上述训练集和验证集送入网络模型进行训练,获得网络模型参数;网络模型训练完成后,对源病理图像数据集以外的随机生成图像进行推理,获得合成的病理图像分割掩码和病理图像。本方法通过构建用于病理图像数据扩充的模型,合成更多符合该数据特征分布的病理图像及其对应的分割掩码,从而扩充原本有限数量的病理图像数据集,可有效帮助现有病理图像分割方法提升分割性能。

    一种HE染色病理图像数据扩充与增强的方法

    公开(公告)号:CN114387264A

    公开(公告)日:2022-04-22

    申请号:CN202210054661.7

    申请日:2022-01-18

    Abstract: 本发明属于医学图像技术领域,具体涉及一种HE染色病理图像数据扩充与增强的方法;所述方法包括模型训练和模型推理两个阶段:在模型训练阶段,对病理图像数据集进行划分,得到训练集、验证集及测试集;构建基于生成对抗网络的深度学习模型;将上述训练集和验证集送入网络模型进行训练,获得网络模型参数;网络模型训练完成后,对源病理图像数据集以外的随机生成图像进行推理,获得合成的病理图像分割掩码和病理图像。本方法通过构建用于病理图像数据扩充的模型,合成更多符合该数据特征分布的病理图像及其对应的分割掩码,从而扩充原本有限数量的病理图像数据集,可有效帮助现有病理图像分割方法提升分割性能。

Patent Agency Ranking