一种基于改进拍卖算法的围捕者决策方法

    公开(公告)号:CN110488849A

    公开(公告)日:2019-11-22

    申请号:CN201910810370.4

    申请日:2019-08-29

    Abstract: 本发明属于多机器人任务分配领域,具体涉及一种基于改进拍卖算法的围捕者决策方法。本发明针对传统拍卖算法中拍卖者身份的缺陷和竞标值存在的不足导致围捕者的选定过程安全性差和决策效率低的问题提出了一种基于改进拍卖算法的围捕者决策方法,作为围捕者的决策方法,用来选定围捕者。本发明通过引入几何中心原理,改变了传统确定拍卖者身份的方式,进而加快了拍卖过程,提高了决策效率,增强了决策过程的安全性;通过改进竞标值函数,来确定最佳的围捕者身份,提高了整体的围捕效率。

    一种基于改进阈值法的多机器人任务分配方法

    公开(公告)号:CN109886574A

    公开(公告)日:2019-06-14

    申请号:CN201910126437.2

    申请日:2019-02-20

    Abstract: 本发明属于信息处理领域,公开了一种基于改进阈值法的多机器人任务分配方法,包含如下步骤:定义第m次迭代时机器人i对任务j的响应阈值;在第m次迭代,阈值刺激差最大时对应的任务即机器人i在t时刻要执行的任务;如果机器人执行任务成功或失败且还有未被执行的任务,继续在未被执行的任务中选择阈值刺激差最大时对应的任务去执行;当机器人进入等待状态或等待区即没有可执行任务时,令机器人不断寻找可执行的任务;直到所有任务都被执行完成即完成一次迭代时,重置机器人和任务点的位置,根据阈值更新公式计算第m+1次迭代时机器人i对任务j的响应阈值和阈值刺激差。本发明优化了多任务处理能力,提高了算法的效率,提高了系统的资源利用率。

    一种基于改进阈值法的多机器人任务分配方法

    公开(公告)号:CN109886574B

    公开(公告)日:2023-02-14

    申请号:CN201910126437.2

    申请日:2019-02-20

    Abstract: 本发明属于信息处理领域,公开了一种基于改进阈值法的多机器人任务分配方法,包含如下步骤:定义第m次迭代时机器人i对任务j的响应阈值;在第m次迭代,阈值刺激差最大时对应的任务即机器人i在t时刻要执行的任务;如果机器人执行任务成功或失败且还有未被执行的任务,继续在未被执行的任务中选择阈值刺激差最大时对应的任务去执行;当机器人进入等待状态或等待区即没有可执行任务时,令机器人不断寻找可执行的任务;直到所有任务都被执行完成即完成一次迭代时,重置机器人和任务点的位置,根据阈值更新公式计算第m+1次迭代时机器人i对任务j的响应阈值和阈值刺激差。本发明优化了多任务处理能力,提高了算法的效率,提高了系统的资源利用率。

    一种基于DBQ算法的路径规划方法

    公开(公告)号:CN110389591A

    公开(公告)日:2019-10-29

    申请号:CN201910809463.5

    申请日:2019-08-29

    Abstract: 本发明属于机器人路径规划领域,具体涉及一种基于DBQ算法的路径规划方法。本发明所提出的路径规划方法通过对强化学习Dyna-Q算法中的动作选择机制进行改进主要解决三个路径规划问题:其一,解决机器人在这种环境中学习的早期阶段学习效率低的问题;其二,提高了机器路径规划的精度;其三,加快了算法的收敛速度。

Patent Agency Ranking