一种C掺杂氮化硼纳米管与碲化铋复合薄膜的制备方法

    公开(公告)号:CN110642233B

    公开(公告)日:2022-09-02

    申请号:CN201911053885.0

    申请日:2019-10-31

    Abstract: 本发明公开了一种C掺杂氮化硼纳米管与碲化铋复合薄膜的制备方法,所述方法包括如下步骤:步骤一:将氮化硼纳米管放到管式炉的中央高温区,打开Ar气瓶,待温度达到1100~1200℃时,连接乙醇瓶,将乙醇气体带入管式炉中反应,获得C掺杂BNNT;步骤二:碲化铋粉末与钢珠置于球磨罐中球磨,获得碲化铋纳米颗粒;步骤三:取C掺杂BNNT置于乙醇溶液中,对其进行超声震荡,取震荡后的溶液与碲化铋纳米颗粒进行混合,超声震荡后通过PVDF滤膜进行真空抽滤,将得到的薄膜风干、热压,得到复合薄膜。本发明的方法工艺简单易行,所用设备简单、廉价,实验过程方便,制备的复合薄膜在热电方面应用广泛。

    一种基于Sigmoid函数的土体热导率预测方法

    公开(公告)号:CN115659598B

    公开(公告)日:2023-06-02

    申请号:CN202211185360.4

    申请日:2022-09-27

    Abstract: 本发明公开了一种基于Sigmoid函数的土体热导率预测方法,所述方法包括如下步骤:一、下限/上限热导率计算:根据土的孔隙率,获得土的下限热导率和上限热导率;二、Ke值计算:根据土体饱和度、土体含砂率,对Ke值进行计算;三、土体热导率计算:根据土体下限热导率、上限热导率与Ke值,计算得出土体热导率k。本发明全方位考虑饱和度、含砂率、干密度对Ke的影响,并对三种Ke模型进行了比较,三种模型考虑了受饱和度单独作用、饱和度&含砂率耦合作用、饱和度&含砂率&干密度耦合作用影响。此模型拟合参数来自超过700个测试数据,能更为准确地预测土的热导率,可被方便应用于工程与科学研究。

    一种C掺杂氮化硼纳米管与碲化铋复合薄膜的制备方法

    公开(公告)号:CN110642233A

    公开(公告)日:2020-01-03

    申请号:CN201911053885.0

    申请日:2019-10-31

    Abstract: 本发明公开了一种C掺杂氮化硼纳米管与碲化铋复合薄膜的制备方法,所述方法包括如下步骤:步骤一:将氮化硼纳米管放到管式炉的中央高温区,打开Ar气瓶,待温度达到1100~1200℃时,连接乙醇瓶,将乙醇气体带入管式炉中反应,获得C掺杂BNNT;步骤二:碲化铋粉末与钢珠置于球磨罐中球磨,获得碲化铋纳米颗粒;步骤三:取C掺杂BNNT置于乙醇溶液中,对其进行超声震荡,取震荡后的溶液与碲化铋纳米颗粒进行混合,超声震荡后通过PVDF滤膜进行真空抽滤,将得到的薄膜风干、热压,得到复合薄膜。本发明的方法工艺简单易行,所用设备简单、廉价,实验过程方便,制备的复合薄膜在热电方面应用广泛。

    一种基于Sigmoid函数的土体热导率预测方法

    公开(公告)号:CN115659598A

    公开(公告)日:2023-01-31

    申请号:CN202211185360.4

    申请日:2022-09-27

    Abstract: 本发明公开了一种基于Sigmoid函数的土体热导率预测方法,所述方法包括如下步骤:一、下限/上限热导率计算:根据土的孔隙率,获得土的下限热导率和上限热导率;二、Ke值计算:根据土体饱和度、土体含砂率,对Ke值进行计算;三、土体热导率计算:根据土体下限热导率、上限热导率与Ke值,计算得出土体热导率k。本发明全方位考虑饱和度、含砂率、干密度对Ke的影响,并对三种Ke模型进行了比较,三种模型考虑了受饱和度单独作用、饱和度&含砂率耦合作用、饱和度&含砂率&干密度耦合作用影响。此模型拟合参数来自超过700个测试数据,能更为准确地预测土的热导率,可被方便应用于工程与科学研究。

Patent Agency Ranking