-
公开(公告)号:CN116433795A
公开(公告)日:2023-07-14
申请号:CN202310699766.2
申请日:2023-06-14
Applicant: 之江实验室
IPC: G06T11/00 , G06T7/33 , G06N3/0464 , G06N3/0475 , G06N3/048 , G06N3/084
Abstract: 本发明公开了一种基于对抗生成网络的多模态影像生成方法和装置,包括:获取同一目标的第一模态影像和第二模态影像,对第一模态影像进行增强得到两幅增强后模态影像;构建包括生成器和判别器的对抗生成网络,其中,生成器基于第一模态影像及其两幅增强后模态影像生成三幅预测第二模态影像,判别器对第二模态影像和第一模态影像对应的预测第二模态影像进行真伪区分判别,判别器还计算输出两幅增强后模态影像对应的两幅预测第二模态影像在判别器中间层的两幅中间特征图;基于两幅中间特征图构建特征之间的对比损失,将对比损失结合对抗生成网络的原有损失对对抗生成网络进行参数优化,提取参数优化的生成器用于多模态影像生成,以提高影像精度。
-
公开(公告)号:CN116402865A
公开(公告)日:2023-07-07
申请号:CN202310661495.1
申请日:2023-06-06
Applicant: 之江实验室
Abstract: 本发明公开了一种利用扩散模型的多模态影像配准方法、装置和介质,该方法首先获取MR图像和CT图像并进行预处理,以构建数据集;然后构建跨模态的生成网络和可变形配准网络,进一步构建跨模态配准网络模型,并基于数据集对该模型进行训练;再使用数据集通过评估指标对训练好的跨模态配准网络模型的性能进行评估,并根据评估结果进一步调整模型参数,以获取最优跨模态配准网络模型;最后获取最优跨模态配准网络模型中的最优可变形配准网络,将待配准图像输入最优可变形配准网络中以获取配准后的图像。本发明包含了利用扩散思想的无判别器的生成模型,有助于减少生成图像的不一致性和伪影,提高多模态配准的结果,提高生成图像的质量。
-
公开(公告)号:CN116342922A
公开(公告)日:2023-06-27
申请号:CN202211604295.4
申请日:2022-12-13
Applicant: 之江实验室
IPC: G06V10/764 , G06V10/82 , G06V10/25 , G06N3/0464 , G06N3/08 , G06T7/00
Abstract: 本发明公开了一种基于多任务模型的智能肝脏影像征象分析及LI‑RADS分类系统,该系统将多期像二维肝脏肿瘤影像输入到多任务卷积神经网络模型中,在主任务中利用该模型自动提取基于LI‑RADS标准的分类任务时所需潜在特征,同时在子任务中提取LI‑RADS标准定义的主要征象分类所需潜在特征,不仅能够实现更高的LI‑RADS分级精度,而且可为医生在临床诊断等实际应用中提供分类依据参考。本发明使用多任务卷积神经网络、基于图像的肿瘤大小自动分析方法,依靠端到端与监督对比学习相结合的方式训练模型,实现可为医生提供判断依据的肝脏肿瘤LI‑RADS分类系统。
-
公开(公告)号:CN115496955B
公开(公告)日:2023-03-24
申请号:CN202211459133.6
申请日:2022-11-18
Applicant: 之江实验室
IPC: G06V10/764 , G06V10/774 , G06V10/82
Abstract: 本申请涉及一种图像分类模型训练方法、图像分类方法、设备和介质,通过将有标签样本输入至图像分类模型,得到监督损失;将无标签样本输入至图像分类模型,得到伪标签和半监督损失,无标签样本由无标签数据集进行不同程度的图像增强处理得到;根据无标签样本的伪标签的属性和对应的图像增强处理的程度,筛选相应无标签样本作为图像分类模型中预设分类的正样本、负样本和锚点,将正样本、负样本和锚点输入至损失函数进行计算,得到对比学习损失,负样本携带有不可靠伪标签;根据监督损失、半监督损失和对比学习损失,确定总损失,将总损失输入至图像分类模型进行反向传播以更新图像分类模型的参数,提升了模型的预测精度,加快了模型收敛速度。
-
公开(公告)号:CN117558414A
公开(公告)日:2024-02-13
申请号:CN202311568414.X
申请日:2023-11-23
Applicant: 之江实验室
IPC: G16H30/20 , G16H30/40 , G06T11/00 , G06T7/11 , G06V10/764 , G06V10/774 , G06V10/82 , G06N3/0464 , G06N3/084
Abstract: 本发明公开了一种多任务肝细胞癌早期复发预测系统、电子设备、介质,包括:预处理模块、数据增强模块、模型训练模块和复发预测模块,选取训练图像对早期复发预测模型进行训练,训练过程中,使用随机梯度下降算法更新模型参数,得到训练好的多任务肝细胞癌早期复发预测模型;所述早期复发预测模型包括早期复发预测分支模型和肿瘤分割分支模型;所述早期复发预测分支模型包括分类网络、分类适应器、全连接层和投影头;所述肿瘤分割分支模型包括编码器、分割适应器和解码器。本发明中适应器充分利用了关联任务的信息,提高了复发预测的精度;本发明提出的适应器即插即用,不会影响模型原有结构。
-
公开(公告)号:CN116385330B
公开(公告)日:2023-09-15
申请号:CN202310661539.0
申请日:2023-06-06
Applicant: 之江实验室
IPC: G06T5/50 , G06N3/0475 , G06N3/094
Abstract: 本发明公开了一种利用图知识引导的多模态医学影像生成方法和装置,该方法首先获取MR图像和CT图像并进行预处理,以构建数据集;然后利用图知识引导构建基于对抗生成网络的对抗生成模型,使用训练集训练对抗生成模型;再获取训练好的对抗生成模型中训练好的生成器,使用验证集通过评估指标对训练好的生成器的性能进行评估,并根据评估结果对生成器的参数进行调整,以获取最优生成器;最后将源域图像或测试集中的源域图像输入最优生成器中以获取生成的目标域图像。本发明能够捕获到跨区域和跨图像关系作为上下文和补偿信息,约束对抗的方向,进一步提升多模态生成的结果,有利于提高生成图像的质量。
-
公开(公告)号:CN116385329B
公开(公告)日:2023-08-29
申请号:CN202310661464.6
申请日:2023-06-06
Applicant: 之江实验室
IPC: G06T5/50 , G06T7/00 , G06N3/0475 , G06N3/0464 , G06N3/094 , G06N3/0455
Abstract: 本发明公开了一种基于特征融合的多层知识蒸馏医学影像生成方法和装置,该方法首先获取MR图像和CT图像并进行预处理,以构建数据集;然后基于特征感知融合构建对抗生成模型,基于多层知识蒸馏使用数据集训练对抗生成模型;再获取训练好的对抗生成模型中训练好的生成器,使用数据集通过评估指标对训练好的生成器的性能进行评估,并根据评估结果进一步调整生成器的参数,以获取最优生成器;最后将源域图像输入最优生成器中以获取生成的目标域图像。本发明能在有限数据的情况下,通过新的数据提取方式可以最大程度上扩充数据库,同时提升图像的生成效果;本发明可以在保留CNN对于局部纹理等信息抓取的优势下,提升对于全局相关性的信息捕获。
-
公开(公告)号:CN115496955A
公开(公告)日:2022-12-20
申请号:CN202211459133.6
申请日:2022-11-18
Applicant: 之江实验室
IPC: G06V10/764 , G06V10/774 , G06V10/82
Abstract: 本申请涉及一种图像分类模型训练方法、图像分类方法、设备和介质,通过将有标签样本输入至图像分类模型,得到监督损失;将无标签样本输入至图像分类模型,得到伪标签和半监督损失,无标签样本由无标签数据集进行不同程度的图像增强处理得到;根据无标签样本的伪标签的属性和对应的图像增强处理的程度,筛选相应无标签样本作为图像分类模型中预设分类的正样本、负样本和锚点,将正样本、负样本和锚点输入至损失函数进行计算,得到对比学习损失,负样本携带有不可靠伪标签;根据监督损失、半监督损失和对比学习损失,确定总损失,将总损失输入至图像分类模型进行反向传播以更新图像分类模型的参数,提升了模型的预测精度,加快了模型收敛速度。
-
公开(公告)号:CN113159007B
公开(公告)日:2021-10-29
申请号:CN202110704535.7
申请日:2021-06-24
Applicant: 之江实验室
Abstract: 本发明公开了一种基于自适应图卷积的步态情感识别方法,首先获取人体关节点按照时间顺序排列的坐标序列;然后构建自适应图卷积网络,图卷积块是以时空图卷积为基础模块,结合了自适应图的构建方法,形成新的图结构,并以此图结构生成邻接矩阵从而进行自适应图卷积操作;最后将获得的坐标序列输入到网络中,经过三个依次连接自适应图卷积块提取到的特征,再经过全局平均池化和全连接操作得到情感识别的初步结果,最后通过Softmax函数得到各类情感的预测分值,分值最高的即为该步态的情感识别结果。本发明将手工设计的固定的图结构和可训练链接通过网络训练得到的非固定的图结构相结合,保留双方优势,互为补充,使得网络对于情感识别的性能明显提升。
-
公开(公告)号:CN113255585A
公开(公告)日:2021-08-13
申请号:CN202110695521.3
申请日:2021-06-23
Applicant: 之江实验室
Abstract: 本发明公开了一种基于色彩空间学习的人脸视频心率估计方法,首先获取人脸视频,然后构建用于人脸视频心率估计的神经网络;所述神经网络包含特征提取模块、色彩空间变换层和心率估计模块;所述特征提取模块采用多层皮肤区域选择方法提取人脸视频的特征图,所述色彩空间变换层通过学习得到,将提取的特征图映射到合适的色彩空间中,所述心率估计模块为估算心率的深度神经网络;最后将获取的人脸视频输入到构建并训练完成的用于人脸视频心率估计的神经网络中得出估算的心率。本发明首次使用色彩空间变换的方式进行人脸视频的心率估计,对比传统色彩空间降低了误差,提升了预测准确度。
-
-
-
-
-
-
-
-
-