-
公开(公告)号:CN109945778A
公开(公告)日:2019-06-28
申请号:CN201910297168.6
申请日:2019-04-15
Applicant: 中国航空工业集团公司北京长城计量测试技术研究所
Abstract: 本发明公开的光频调制法皮米级分辨力大行程激光测量装置,属于精密测量技术领域。本发明主要由干涉测量模块、光学解调模块、细分控制模块、控制及信息处理模块组成。所述干涉测量模块包括光源准直器、第一偏振分光棱镜、第一1/4波片、调制参考镜、FP干涉腔、第二1/4波片、测量镜、第三1/4波片、第二偏振分光棱镜、第一光电接收器、第二光电接收器。采用光频小数调制的方法克服FP干涉腔无法满足长距离干涉测量问题,能够满足激光干涉测量长距离的同时,使其分辨力在原有干涉分辨能力的基础之上进一步提升到皮米量级,实现长距离并具有皮米量级分辨力的激光测量。本发明结构相对简单,易于高精度实现动态特性测量。
-
公开(公告)号:CN105371770A
公开(公告)日:2016-03-02
申请号:CN201510862602.2
申请日:2015-12-01
Applicant: 中国航空工业集团公司北京长城计量测试技术研究所
Abstract: 本发明涉及一种纳米压入仪压头位移和载荷的测量装置,属于计量技术领域。其特征是由弹簧支撑的压块在外力作用下可上下移动,移动的距离由激光干涉仪测量。压块的位移与所受的力之间的关系可通过测量压块在标准砝码的重力作用下产生的位移来确定。在用于纳米压入仪压头位移和载荷测量时,压头在压块上施加载荷,其位移由激光干涉仪测量,根据该装置的加载力与位移之间的关系,可以确定载荷的大小。本装置硬件由压块、弹簧、基座、稳频激光器、分光镜、参考角锥棱镜、测量角锥棱镜、偏振片、光电探测器和测量系统组成。本发明的装置可以在一次测量过程中同时完成压头位移和载荷的测量,在材料纳米力学测试及仪器校准方面有重要的应用价值。
-
公开(公告)号:CN114062170B
公开(公告)日:2024-06-14
申请号:CN202111285637.6
申请日:2021-11-02
Applicant: 中国航空工业集团公司北京长城计量测试技术研究所
Abstract: 本发明公开的一种基于梳齿电容的平衡式微小力值加载装置及方法,属于精密测量技术领域。本发明包括数据采集与控制模块、电压调整模块、压电陶瓷驱动模块、静电力平衡式压头和电容读取模块。静电力平衡式压头用于实现微小力值加载,主要由压电陶瓷堆、固定梳齿、悬浮梳齿、传导杆、压针和弹性支撑梁组成。本发明保持梳齿电容的输出电容值不变,利用压电陶瓷带动梳齿电容固定端产生垂直于压入方向的位移的同时,通过调节梳齿电容电压改变静电力,使梳齿电容悬浮梳齿的弹性支撑一直处于初始状态,当压头再次达到受力平衡时,增加的静电力直接转换为加载力,从而消除因弹性支撑梁的变形引入的加载力的非线性,实现高精度可控加载。
-
公开(公告)号:CN114062170A
公开(公告)日:2022-02-18
申请号:CN202111285637.6
申请日:2021-11-02
Applicant: 中国航空工业集团公司北京长城计量测试技术研究所
Abstract: 本发明公开的一种基于梳齿电容的平衡式微小力值加载装置及方法,属于精密测量技术领域。本发明包括数据采集与控制模块、电压调整模块、压电陶瓷驱动模块、静电力平衡式压头和电容读取模块。静电力平衡式压头用于实现微小力值加载,主要由压电陶瓷堆、固定梳齿、悬浮梳齿、传导杆、压针和弹性支撑梁组成。本发明保持梳齿电容的输出电容值不变,利用压电陶瓷带动梳齿电容固定端产生垂直于压入方向的位移的同时,通过调节梳齿电容电压改变静电力,使梳齿电容悬浮梳齿的弹性支撑一直处于初始状态,当压头再次达到受力平衡时,增加的静电力直接转换为加载力,从而消除因弹性支撑梁的变形引入的加载力的非线性,实现高精度可控加载。
-
公开(公告)号:CN109945778B
公开(公告)日:2020-09-11
申请号:CN201910297168.6
申请日:2019-04-15
Applicant: 中国航空工业集团公司北京长城计量测试技术研究所
Abstract: 本发明公开的光频调制法皮米级分辨力大行程激光测量装置,属于精密测量技术领域。本发明主要由干涉测量模块、光学解调模块、细分控制模块、控制及信息处理模块组成。所述干涉测量模块包括光源准直器、第一偏振分光棱镜、第一1/4波片、调制参考镜、FP干涉腔、第二1/4波片、测量镜、第三1/4波片、第二偏振分光棱镜、第一光电接收器、第二光电接收器。采用光频小数调制的方法克服FP干涉腔无法满足长距离干涉测量问题,能够满足激光干涉测量长距离的同时,使其分辨力在原有干涉分辨能力的基础之上进一步提升到皮米量级,实现长距离并具有皮米量级分辨力的激光测量。本发明结构相对简单,易于高精度实现动态特性测量。
-
-
-
-