一种光场图像前后景自动分割方法

    公开(公告)号:CN105184808A

    公开(公告)日:2015-12-23

    申请号:CN201510670734.5

    申请日:2015-10-13

    CPC classification number: G06T2207/10004

    Abstract: 本发明提供一种光场图像前后景自动分割方法,包括:1)基于超像素分割算法将光场图像划分为多个基本区域;2)提取每个基本区域的聚焦度;3)生成各种可能的前后景分割方案,选出使得总代价最小的前后景分割方案,所述总代价是各个基本区域被划分为前景或者背景的单区域代价的和,每个基本区域的所述单区域代价根据该基本区域的聚焦度得出;或者总代价是所有基本区域的单区域代价与相邻基本区域的区域相似度代价的加权和,所述相邻基本区域的区域相似度代价根据被分别划分为前景和后景的两个相邻基本区域的图像特征距离得出。本发明能够对景深差异较小的光场图像进行准确的前后景自动分割,提高分割的准确度;并且本发明的计算量较小。

    基于双目光场相机的深度获取方法和系统

    公开(公告)号:CN109840922B

    公开(公告)日:2021-03-02

    申请号:CN201810097816.9

    申请日:2018-01-31

    Abstract: 本发明涉及一种基于双目光场相机的深度获取方法和系统,包括:使用场相机拍摄场景,得到场景的视图和光场深度图;使用另一相机对场景进行拍摄,得到场景的另一视图,并根据视图间的视差,得到场景的双目深度图;使用光场相机拍摄具有深度标尺的标定场景,将光场深度图归一化到真实的空间尺度,得到第一真实深度图;使用光场相机拍摄标定场景,将双目深度图归一化到真实的空间尺度,得到第二真实深度图;使用光场深度变化的梯度值,获取光场深度图中各像素点的可信度;根据可信度和马尔科夫随机场,将第一真实深度图和第二真实深度图相融合,得到融合深度图。本发明通过融合光场深度和双目深度,实现从近到远准确计算场景深度的解决方案。

    基于双目光场相机的深度获取方法和系统

    公开(公告)号:CN109840922A

    公开(公告)日:2019-06-04

    申请号:CN201810097816.9

    申请日:2018-01-31

    Abstract: 本发明涉及一种基于双目光场相机的深度获取方法和系统,包括:使用场相机拍摄场景,得到场景的视图和光场深度图;使用另一相机对场景进行拍摄,得到场景的另一视图,并根据视图间的视差,得到场景的双目深度图;使用光场相机拍摄具有深度标尺的标定场景,将光场深度图归一化到真实的空间尺度,得到第一真实深度图;使用光场相机拍摄标定场景,将双目深度图归一化到真实的空间尺度,得到第二真实深度图;使用光场深度变化的梯度值,获取光场深度图中各像素点的可信度;根据可信度和马尔科夫随机场,将第一真实深度图和第二真实深度图相融合,得到融合深度图。本发明通过融合光场深度和双目深度,实现从近到远准确计算场景深度的解决方案。

    一种光场图像前后景自动分割方法

    公开(公告)号:CN105184808B

    公开(公告)日:2018-09-07

    申请号:CN201510670734.5

    申请日:2015-10-13

    Abstract: 本发明提供一种光场图像前后景自动分割方法,包括:1)基于超像素分割算法将光场图像划分为多个基本区域;2)提取每个基本区域的聚焦度;3)生成各种可能的前后景分割方案,选出使得总代价最小的前后景分割方案,所述总代价是各个基本区域被划分为前景或者背景的单区域代价的和,每个基本区域的所述单区域代价根据该基本区域的聚焦度得出;或者总代价是所有基本区域的单区域代价与相邻基本区域的区域相似度代价的加权和,所述相邻基本区域的区域相似度代价根据被分别划分为前景和后景的两个相邻基本区域的图像特征距离得出。本发明能够对景深差异较小的光场图像进行准确的前后景自动分割,提高分割的准确度;并且本发明的计算量较小。

    基于K均值聚类的光场前景分割方法及装置

    公开(公告)号:CN107862698B

    公开(公告)日:2019-01-08

    申请号:CN201711230611.5

    申请日:2017-11-29

    Abstract: 本发明公开了一种基于K均值聚类的光场前景分割方法及装置,方法包括:针对待处理的光场图像,提取重聚焦图像、极线平面图像和全清晰图像;采用结构张量方法对极线平面图像进行处理,获取极线平面深度信息;采用离散余弦响应方法对重聚焦图像进行处理,获取重聚焦信息;采用超像素分割技术讲全清晰图像分割的多个区域,针对每一个区域,获取区域颜色特征、区域几何特征、区域对应点特征和区域重聚焦特征;并采用K均值聚类计算区域之间的相似度;基于相似度,采用图割算法标记前景和背景,获取光场图像的前景分割结果。上述方法处理后的前景分割结果比现有技术中的前景分割结果更准确。

Patent Agency Ranking