-
公开(公告)号:CN110059181A
公开(公告)日:2019-07-26
申请号:CN201910202727.0
申请日:2019-03-18
Applicant: 中国科学院自动化研究所 , 国家计算机网络与信息安全管理中心
IPC: G06F16/35
Abstract: 本发明属于文本分类领域,具体涉及一种面向大规模分类体系的短文本标签方法、系统、装置,旨在为了解决有限数据情况下面向大规模分类体系的短文本标签系统的稳定性不高的问题。本发明方法包括:获取待分类的第一短文本信息集合,并基于正向最大匹配分词和word2vec词向量表示技术进行预处理得到第二短文本信息集合;基于规则的分类方法、有监督的神经网络分类方法,对第二短文本信息集合进行二分类后进行短文本过滤,并基于同样的分类方法进行各短文本的第一、二级分类标签,基于半监督学习的标签传播方法进行各短文本的第三、四级分类标签。本发明在有限数据情况下保证了面向大规模分类体系的短文本标签系统的稳定性。
-
公开(公告)号:CN108563686A
公开(公告)日:2018-09-21
申请号:CN201810208801.5
申请日:2018-03-14
Applicant: 中国科学院自动化研究所 , 国家计算机网络与信息安全管理中心
Abstract: 本发明涉及计算机技术领域,具体提供了一种基于混合神经网络的社交网络谣言识别方法及系统,旨在解决如何在考虑谣言转发评论信息的情况下,准确识别社交网络中谣言的技术问题。为此目的,本发明中社交网络谣言识别方法,首先利用三种不同的神经网络分别获取用户特征向量、原文特征向量和传播信息特征向量,然后将用户特征向量、原文特征向量和传播信息特征向量融合为新的特征向量,最后利用第四种神经网络对融合后的特征向量进行谣言识别。基于上述步骤,能够快速且准确地检测到社交网络中的谣言。同时,本发明中的系统能够执行并实现上述步骤。
-
公开(公告)号:CN108563686B
公开(公告)日:2021-07-30
申请号:CN201810208801.5
申请日:2018-03-14
Applicant: 中国科学院自动化研究所 , 国家计算机网络与信息安全管理中心
IPC: G06F16/35 , G06F40/289 , G06N3/04 , G06N3/08
Abstract: 本发明涉及计算机技术领域,具体提供了一种基于混合神经网络的社交网络谣言识别方法及系统,旨在解决如何在考虑谣言转发评论信息的情况下,准确识别社交网络中谣言的技术问题。为此目的,本发明中社交网络谣言识别方法,首先利用三种不同的神经网络分别获取用户特征向量、原文特征向量和传播信息特征向量,然后将用户特征向量、原文特征向量和传播信息特征向量融合为新的特征向量,最后利用第四种神经网络对融合后的特征向量进行谣言识别。基于上述步骤,能够快速且准确地检测到社交网络中的谣言。同时,本发明中的系统能够执行并实现上述步骤。
-
公开(公告)号:CN108470046B
公开(公告)日:2020-12-01
申请号:CN201810184478.2
申请日:2018-03-07
Applicant: 中国科学院自动化研究所 , 国家计算机网络与信息安全管理中心
IPC: G06F16/9535 , G06F16/34
Abstract: 本发明涉及计算机技术领域,具体提供了一种基于新闻事件搜索语句的新闻事件排序方法及系统,旨在解决在考虑用户主观信息的情况下,如何实现新闻事件排序的技术问题。为此目的,本发明中的新闻事件排序方法,能够通过预设的新闻事件排序模型对预先获取的新闻事件搜索语句进行识别,得到按照相关度大小排序的新闻事件排序结果。其中,新闻事件搜索语句包含能够表征用户情感倾向的用户主观信息。基于此,本发明能够结合用户对新闻事件的情感倾向,按照新闻事件与用户偏好相关程度进行排序,从而提高新闻事件排序结果的准确性。同时,本发明中的系统能够执行并实现上述方法。
-
公开(公告)号:CN112287684B
公开(公告)日:2024-06-11
申请号:CN202011192254.X
申请日:2020-10-30
Applicant: 中国科学院自动化研究所 , 国家计算机网络与信息安全管理中心
IPC: G06F40/295 , G06F40/30
Abstract: 本发明属于领域,具体涉及了一种融合变体词识别的短文本审核方法及装置,旨在解决如何将变体词识别技术融合到有害文本审核任务中并实现模型自动更新的问题。本发明包括:构建配置词库,基于社交媒体平台获取待审核文本数据,对待审核文本数据进行筛选获得可疑文本数据,并去除无意义信息并计算文本特征向量和统计特征向量,将文本特征向量和统计特征向量进行特征融合通过训练好的基于支持向量机的有害文本分类模型获取有害文本,利用预设的关键词抽取算法获取所述有害文本的敏感词写入配置词库。本发明将变体词识别技术融合到文本特征和统计特征计算进行有害文本审核任务中并实现模型自动更新,提高了文本审核的准确率和更新速度。
-
公开(公告)号:CN112287684A
公开(公告)日:2021-01-29
申请号:CN202011192254.X
申请日:2020-10-30
Applicant: 中国科学院自动化研究所 , 国家计算机网络与信息安全管理中心
IPC: G06F40/295 , G06F40/30
Abstract: 本发明属于领域,具体涉及了一种融合变体词识别的短文本审核方法及装置,旨在解决如何将变体词识别技术融合到有害文本审核任务中并实现模型自动更新的问题。本发明包括:构建配置词库,基于社交媒体平台获取待审核文本数据,对待审核文本数据进行筛选获得可疑文本数据,并去除无意义信息并计算文本特征向量和统计特征向量,将文本特征向量和统计特征向量进行特征融合通过训练好的基于支持向量机的有害文本分类模型获取有害文本,利用预设的关键词抽取算法获取所述有害文本的敏感词写入配置词库。本发明将变体词识别技术融合到文本特征和统计特征计算进行有害文本审核任务中并实现模型自动更新,提高了文本审核的准确率和更新速度。
-
公开(公告)号:CN110059181B
公开(公告)日:2021-06-25
申请号:CN201910202727.0
申请日:2019-03-18
Applicant: 中国科学院自动化研究所 , 国家计算机网络与信息安全管理中心
IPC: G06F16/35
Abstract: 本发明属于文本分类领域,具体涉及一种面向大规模分类体系的短文本标签方法、系统、装置,旨在为了解决有限数据情况下面向大规模分类体系的短文本标签系统的稳定性不高的问题。本发明方法包括:获取待分类的第一短文本信息集合,并基于正向最大匹配分词和word2vec词向量表示技术进行预处理得到第二短文本信息集合;基于规则的分类方法、有监督的神经网络分类方法,对第二短文本信息集合进行二分类后进行短文本过滤,并基于同样的分类方法进行各短文本的第一、二级分类标签,基于半监督学习的标签传播方法进行各短文本的第三、四级分类标签。本发明在有限数据情况下保证了面向大规模分类体系的短文本标签系统的稳定性。
-
公开(公告)号:CN109800431A
公开(公告)日:2019-05-24
申请号:CN201910062802.8
申请日:2019-01-23
Applicant: 中国科学院自动化研究所 , 国家计算机网络与信息安全管理中心
Abstract: 本发明属于计算机科学技术领域,尤其是涉及一种事件信息关键词提取方法、监控方法、及其系统和装置,旨在为了解决解决无监督方法提取关键词效果不稳定的问题。本发明提取方法对于获取的待监控的事件信息,基于多种关键词提取技术提取并优选一组相关性很强的关键词作为第一关键词组,而后基于关键词在时域的发展演化选出最新的热点词汇作为第二关键词组,再后对同一时间段内的同一事件的不同报道进行聚类,提取各聚类的关键词合并后作为第三关键字组,最后合并三个关键词组并选定最终的关键词组合。本发明提高了系统的稳定性,同时兼顾了时域及同一事件不同侧面的发展方向。
-
公开(公告)号:CN109800431B
公开(公告)日:2020-07-28
申请号:CN201910062802.8
申请日:2019-01-23
Applicant: 中国科学院自动化研究所 , 国家计算机网络与信息安全管理中心
IPC: G06F40/289 , G06F16/35
Abstract: 本发明属于计算机科学技术领域,尤其是涉及一种事件信息关键词提取、监控方法及系统及存储和处理装置,旨在为了解决解决无监督方法提取关键词效果不稳定的问题。本发明提取方法对于获取的待监控的事件信息,基于多种关键词提取技术提取并优选一组相关性很强的关键词作为第一关键词组,而后基于关键词在时域的发展演化选出最新的热点词汇作为第二关键词组,再后对同一时间段内的同一事件的不同报道进行聚类,提取各聚类的关键词合并后作为第三关键字组,最后合并三个关键词组并选定最终的关键词组合。本发明提高了系统的稳定性,同时兼顾了时域及同一事件不同侧面的发展方向。
-
公开(公告)号:CN108470046A
公开(公告)日:2018-08-31
申请号:CN201810184478.2
申请日:2018-03-07
Applicant: 中国科学院自动化研究所 , 国家计算机网络与信息安全管理中心
IPC: G06F17/30
CPC classification number: G06F16/34 , G06F16/9535
Abstract: 本发明涉及计算机技术领域,具体提供了一种基于新闻事件搜索语句的新闻事件排序方法及系统,旨在解决在考虑用户主观信息的情况下,如何实现新闻事件排序的技术问题。为此目的,本发明中的新闻事件排序方法,能够通过预设的新闻事件排序模型对预先获取的新闻事件搜索语句进行识别,得到按照相关度大小排序的新闻事件排序结果。其中,新闻事件搜索语句包含能够表征用户情感倾向的用户主观信息。基于此,本发明能够结合用户对新闻事件的情感倾向,按照新闻事件与用户偏好相关程度进行排序,从而提高新闻事件排序结果的准确性。同时,本发明中的系统能够执行并实现上述方法。
-
-
-
-
-
-
-
-
-