一种基于神经网络模型与NSGA-II遗传算法的射流泵多目标优化方法
摘要:
本发明提供一种基于神经网络模型与NSGA‑II遗传算法的射流泵多目标优化方法,主要步骤包括:确定射流泵设计参数、优化目标、约束条件,基于抽样方法获取样本点设计参数;通过CFD软件仿真获取样本点设计参数对应的优化目标值;利用样本点数据,构建射流泵设计参数与优化目标的神经网络模型,验证其预测精度;基于神经网络模型,采用NSGA‑II遗传算法,获取最终优化结果。本发明将CFD方法与神经网络模型、遗传算法相结合,不仅解决了多参数、多学科带来的复杂优化设计难以解决的问题,降低计算难度,解决以往基于CFD模拟或实验的优化设计方法成本高、耗时长的问题,还实现了射流泵多目标优化,满足实际工程中扬程比的特殊设计需求,有效改善了射流泵的水力性能。
0/0