US11026356B2

An electrical device comprises a printed circuit board, a first contact portion, a second contact portion, a first conductive wall and a second conductive wall. The printed circuit board has a first surface and a second surface, on which the first contact portion and the second contact portion are disposed, respectively. The first conductive wall and the second conductive wall are in electrical contact with the first contact portion and the second contact portion, respectively. The first contact portion and the second contact portion are offset from one another in a direction parallel to at least one of the first surface and the second surface.
US11026353B2

An arrangement has a housing and a power electronics circuit arranged on a housing base in the housing. A cavity with connections, which lead to the housing exterior, for supplying and discharging a cooling liquid is formed in the housing base. Cooling coils through which the cooling liquid can flow are formed on that side of the housing base which is averted from the cavity. A fan which is driven by an electric motor is arranged in the housing in such a way that the air flow of the fan is cooled by the cooling coils and then draws heat from the power electronics circuit.
US11026347B2

A configurable electronics cabinet cooling system includes a cabinet having multiple walls including at least one universal cabinet wall. The universal cabinet wall has a planar outward facing surface and multiple apertures. A heat transfer component is releasably connected to the universal cabinet wall. The heat transfer component is selected from either a conductive cooling member or a convective cooling member each adapted to be interchangeably and releasably connected to the universal cabinet wall using fasteners extending through same ones of the apertures. Each of the conductive cooling member and the convective cooling member includes a planar surface, the planar surface adapted to directly contact the outward facing surface of the universal cabinet wall.
US11026341B2

A switching module may include a plurality of cooling plates stacked along a vertical direction, a switch disposed between the cooling plates, a first supporting member disposed below the lowermost cooling plate, a second supporting member disposed above the uppermost cooling plate, first and second pressing support portions disposed between the lowermost cooling plate and the first supporting member, and a pressing member disposed between the uppermost cooling plate and the second supporting member.
US11026340B2

A passenger protection control device for effectively preventing an infiltration of water into the interior of a case without the use of a sealant includes: a printed circuit board; a connector; and a case that accommodates such that, while a connection end surface with a wire harness of the connector is exposed, the printed circuit board is isolated from the outside. The case is formed by: a box shaped cover in which the periphery of a ceiling wall is enclosed by side walls and a floor surface is opened; and a rear cover that plugs the floor surface of the cover. The connector is installed in an opening provided in the side wall of the cover. The rear cover has a first standing wall projecting so as to face a connector in the portion of the cover in which the connector is installed. The first standing wall of the rear cover has a planar region in a head top part. The planar region has an inclined surface having a falling gradient facing outwardly from the cover.
US11026338B2

A waterproof casing for packaging a circuit board having an antenna includes a housing, a waterproof gasket, and an end cover. The housing has an accommodation space and a side opening communicating with each other. The accommodation space is configured to accommodate the circuit board. The waterproof gasket includes a main body and an extending portion. The main body covers the side opening. The extending portion extends from the main body. The end cover abuts against a side of the main body away from the accommodation space, and is fixed to the housing to form a box with the housing. The box has a communication opening positioned corresponding to the antenna. The extending portion hermetically covers the communication opening.
US11026337B2

There is disclosed a motor vehicle electronic control unit casing. The casing includes a housing (1) for electronic components, and a cover (15). The housing and cover (15) are inter-engageable. The housing (1) has a base (2), and an upstanding peripheral side wall (3) defining a peripheral edge (4) in spaced relation to the base (2) and which extends around an access opening of the housing. The cover (15) has a closure part (16) and is configured to close the access opening via engagement between the closure part (16) and the housing (1) around the peripheral edge (4). The cover (15) also has a mounting portion configured to be mounted to a mounting surface (27) in a motor vehicle. The mounting portion depends from the closure part (16) so as to extend substantially alongside the peripheral sidewall of the housing (1) when the housing and the cover (15) are inter-engaged to close the access opening, the mounting portion thereby being configured to secure the housing relative to the mounting surface (27) such that the peripheral edge (4) is spaced from the mounting surface (27).
US11026336B1

A display device is provided in the present disclosure. The display device includes a flexible screen, a support structure, and a foldable structure. The flexible screen includes a first main body, a second main body, and a third main body connected to each of the first main body and the second main body. The support structure includes a first support portion configured to support the first main body and a second support portion configured to support the second main body. The foldable structure overlaps the third main body, and the first support portion and the second support portion are connected to each other through the foldable structure. During a folding process of the display device, at least a portion of the foldable structure is in contact with the third main body and configured to roll relative to the third main body.
US11026330B2

A display device includes a display panel, a first connection circuit board, a second connection circuit board, and a sealing member. The display panel may include an insulation layer, a first pad, and a second pad. A distance between a top surface of the insulation layer and a bottom surface of the second connection circuit board may be substantially the same as that between the top surface of the insulation layer and a top surface of the first connection circuit board.
US11026329B2

A device for fixing a camera module, includes a base part; and a fixing unit including a first fixing part for supporting one side of each of a plurality of boards, and a second fixing part for supporting the other side facing one side of each of the plurality of boards, wherein a plurality of first fixing parts extends in a first direction from the base part, and includes a plurality of protruding parts protruding in the direction perpendicular to the first direction in order to support one side of each of the plurality of boards, and a plurality of second fixing parts extends in the first direction from the base part, and includes a plurality of protruding parts for supporting the other side of each of the plurality of boards.
US11026328B2

A display apparatus and a manufacturing method thereof are provided. The display apparatus includes a printed circuit board on which a plurality of light emitting diodes (LEDs) is mounted; a frame configured to support the printed circuit board, and including a frame hole passing through the frame; a chassis coupled to the frame, and including a chassis hole configured to correspond to the frame hole; and a bonding member positioned between the printed circuit board and the frame, through the frame hole and the chassis hole, the bonding member configured to bond the frame to the printed circuit board.
US11026327B2

According to one embodiment, the present invention relates to a printed circuit board, comprising: a first insulating layer; an inner layer circuit pattern disposed on an upper surface of the first insulating layer; a second insulating layer, disposed on the first insulating layer, for covering the inner layer circuit pattern; a first outer layer circuit pattern integrated into a lower surface of the first insulating layer; and a second outer layer circuit pattern embedded in an upper surface of the second insulating layer, the first insulating layer comprising a thermosetting resin, and the second insulating layer comprising a photocurable resin.
US11026317B2

The invention provides a light management information system for an outdoor lighting network system, having a plurality of outdoor light units each including at least one sensor type, where each of the light units communicates with at least one other light unit, at least one user input/output device in communication with at one or more of said outdoor light units, a central management system in communication with light units, said central management system sends control commands and/or information to one or more of said outdoor light units, in response to received outdoor light unit status/sensor information from one or more of said outdoor light units or received user information requests from said user input/output device, a resource server in communication with said central management system, wherein the central management system uses the light unit status/sensor information and resources from the resource server to provide information to the user input/output device and/or reconfigure one or more of the lights units.
US11026314B2

A sensor for sensing environmental characteristics of a space may include a visible light sensing circuit for recording an image of the space and a control circuit responsive to the visible light sensing circuit. The control circuit may detect an occupancy or vacancy condition in the space in response to the visible light sensing circuit, and measure a light level in the space in response to the visible light sensing circuit. The control circuit may also include a low-energy occupancy sensing circuit for detecting an occupancy condition in the space. The control circuit may disable the visible light sensing circuit when the space is vacant. The control circuit may detect an occupancy condition in the space in response to the low-energy occupancy sensing circuit and subsequently enable the visible light sensing circuit. The visible light sensor may be configured in a way that protects the privacy of the occupants of the space.
US11026307B2

A lighting fixture for powering multiple LED groups to generate a selectable color temperature. The lighting fixture provides varying amounts of power to each group of LEDs to achieve a selected color temperature. Current from a driver may be divided between the LED groups based on a selected operational state, which is selected using a switch or other configurable input. The operational states may turn the LED groups on or off or may control an amount of current received by the LED groups. In some configurations, all of the LED groups are always at least partially powered.
US11026303B2

An illuminator including a light source and an optical device is provided. The light source is configured to emit light. The optical device is configured to provide uniform illumination with at least one indicating mark after receiving light. The optical device includes a diffusing part and a directing part. The diffusing part is configured to provide uniform illumination. The directing part is configured to provide at least one indicating mark.
US11026294B2

A two-way wireless relay transmission method based on network coding is provided, wherein two end nodes and n relay nodes (wherein n≥2) which form a two-way wireless relay (TWRN) are divided into three different categories, so that any two nodes in a same category are separated by at least two relay nodes belonging to other different categories, and in a same timeslot, only nodes belonging to one category are allowed to transmit data packets and nodes of the other two categories should keep silent. As a result, the mutual interference caused by the simultaneous transmission of data packets between adjacent nodes is effectively avoided, and the mutual interference caused by the simultaneous transmission of data packets by the nodes belonging to a same category is reduced.
US11026291B2

Embodiments herein provide a method for handling a user plane by a UE configured for dual connectivity operation. The method includes receiving a RRC reconfiguration message including one or more Layer 2 indications and a Layer 2 configuration corresponding to one or more radio bearers from one of a MN and a SN involved in a dual connectivity operation of the UE. Further, the method includes performing, by the UE, one of: reestablishing of a RLC entity and a data recovery procedure for a PDCP entity corresponding to the radio bearer based on the one or more Layer 2 indications and the Layer 2 configuration received in the RRC reconfiguration message, and reestablishing of a RLC entity and reestablishing of a PDCP entity corresponding to the radio bearer based on the one or more Layer 2 indications and the Layer 2 configuration received in the RRC reconfiguration message.
US11026290B2

A medium access control circuit includes a processor, N hardware queues, and an interface circuit, where the N hardware queues are divided into a plurality of hardware queue groups. Where the first hardware queue group corresponds to a network property of the data frame based on a first mapping relationship, the first hardware queue corresponds to a service type of the data frame based on a second mapping relationship, the first mapping relationship includes mappings from network properties to hardware queue groups, and the second mapping relationship includes mappings from a plurality of service types to a plurality of hardware queues in the hardware queue group corresponding to the network property of the data frame; and then, the interface circuit sends the data frame from the N hardware queues through a radio channel.
US11026279B1

A network device may receive multi-access edge computing (MEC) proximity service information that identifies a set of MEC devices and a set of network services supported by respective MEC devices of the set of MEC devices. The network device may transmit, to a base station, at least a portion of the MEC proximity service information for broadcasting by the base station. The network device may receive, from a user device, a request to establish a peer-to-peer connection with a MEC device for the network service. The network device may authenticate the user device for access to the network service. The network device may transmit, to the user device and the MEC device, connection information that enables the user device and the MEC device to establish the peer-to-peer connection, based on authenticating the user device for access to the network service.
US11026275B2

A method of handling collision between PDU session establishment and PDU session release procedures is proposed. At UE side, a UE first initiates a PDU session establishment procedure to establish a PDU session having a PDU session ID. If UE receives a PDU session release command message on the same PSI, UE should ignore the PDU session release command message, and proceed with the PDU session establishment procedure. At NW side, a network entity initiates a PDU session release procedure to release a PDU session having a PDU session ID. If the network entity receives a PDU session establishment request message from UE on the same PDU session ID, the network entity should locally release the PDU session and proceed with the PDU session establishment procedure.
US11026274B2

Embodiments of the present disclosure provide a session connection establishment method and system, and a related device. The method may include: receiving, by a first radio access network device, an initial attach request sent by a terminal device; sending, by the first radio access network device, the initial attach request to a first core network device; receiving, by the first radio access network device, an initial attach request feedback that is sent by the first core network device in response to the initial attach request, where the initial attach request feedback includes session identifiers of at least two user plane session connections, and sending, by the first radio access network device, session configuration information to the terminal device.
US11026261B2

Methods, systems, and devices for wireless communication are described. A user equipment (UE) may receive a downlink (DL) signal from a base station on one or more DL beam(s). The UE may identify a selected DL beam of the one or more DL beam(s) for communications from the base station to the UE. The UE may transmit a scheduling request message to the base station using at least one of a resource or a waveform selected based at least in part on the selected DL beam.
US11026259B2

Embodiments of the present disclosure disclose a data communication method and apparatus. The data communication method includes: when receiving a PPDU, obtaining, by a network node, a BSS identifier in the PPDU; if the BSS identifier in the PPDU is different from a first BSS identifier, and the BSS identifier in the PPDU is the same as a second BSS identifier, determining whether the PPDU meets a preset spatial reuse condition, where the first BSS identifier is an identifier of a first BSS to which the network node belongs, the second BSS identifier is an identifier of an extended BSS to which a target relay belongs, and the target relay and the network node belong to the first BSS; and if the PPDU meets the preset spatial reuse condition, contending for an access channel, and communicating with a station other than the target relay in the first BSS.
US11026253B2

Aspects of the disclosure relate to mechanisms for mapping a physical downlink control channel (PDCCH) across multiple transmission configuration indication (TCI) states. In some examples, the PDCCH may then be encoded using a common mother polar code for each of a first set of control channel elements (CCEs) mapped to a first TCI state and a remaining set of CCEs mapped to a second TCI state. First and second portions of the encoded PDCCH may then be transmitted, such that the first portion includes the first set of CCEs, and the second portion includes the remaining set of CCEs.
US11026242B2

A method and a radio access device for performing the method for positioning of a target station (STA) by a radio access device. The method receives sounding feedback, from a target station (STA), for each of a plurality of subbands in response to sending a sounding signal, the sounding feedback comprising channel quality information for each subband of the plurality of subbands. The method calculates an angle-of-arrival (AoA) characteristic from the sounding feedback for at least a subset of the plurality of subbands and maps the AoA characteristics of the at least the subset of the plurality of subbands to a fingerprint in a fingerprint reference map. The method then determines the location of the target STA based on at least the fingerprint.
US11026230B2

A wireless telecommunications system in which downlink communications are made using a radio interface that spans a system frequency bandwidth (host carrier) and supports at least some communications from a base station to least some terminal devices within a plurality of restricted frequency bands (virtual carriers) which are narrower than and within the system frequency bandwidth. A terminal device conveys an indication of its identity, e.g. an IMSI, to the base station during an initial connection procedure as the terminal device seeks to access the radio interface. The terminal device and the base station both determine a selected restricted frequency band from among the plurality of restricted frequency bands based on the identity of the terminal device in the same way. Thus the terminal device and the base station select the same restricted frequency band and can accordingly configure their respective transceivers to allow for downlink communications between them within the selected restricted frequency band.
US11026228B2

A slot type indication method and an apparatus and a slot type determining method and an apparatus are provided. Under the slot type indication method, a first indication information can be generated by a network device. The first indication information indicates a slot type of a first slot. When the slot type of the first slot is a predefined type, the first indication information further indicates whether a second slot is an uplink-only slot, and the first slot is a slot that includes a downlink control channel. The first indication information can be sent, by the network device, by using the downlink control channel of the first slot.
US11026225B2

Methods, systems, and devices for wireless communications are described. A user equipment (UE) may receive multiple physical downlink control channels (PDCCHs) in one or more slots along with data traffic, where one of the PDCCHs includes a downlink preemption indication (DLPI) signifying that a portion of the data traffic was preempted. In some cases, the UE may monitor, within a same slot, for both the data traffic and an additional PDCCH carrying the DLPI and then transmit, within the same slot, a feedback message based on attempting to decode the data traffic, taking into account the DLPI. Additionally, the UE may receive the data traffic via a first service, where the DLPI indicates a second service preempts the first service. In some cases, the DLPI may be transmitted based on the UE being capable of processing the data traffic and transmitting the feedback message within the same slot.
US11026222B2

Provided are a user equipment, base station and wireless communication methods related to uplink control information mapping in physical uplink resources in NR (New Radio access technology). A user equipment comprises: circuitry operative to map, in physical resource blocks (PRBs) for Physical Uplink Shared Channel (PUSCH), Uplink Control Information (UCI) to one or more available resource elements according to their distances with resource elements where reference signals are mapped in one or more of time domain, frequency domain and spatial domain; and a transmitter operative to transmit the UCI and the reference signals in PUSCH on the PRBs to a base station.
US11026220B2

The present disclosure relates to the technical field of communications. Provided are a resource allocation method, apparatus and system applicable to an access network device. The method includes: acquiring J types of configuration information, each type of configuration information including information of a resource block to be allocated, where J≥1; and providing notification of the J types of configuration information.
US11026206B2

Systems and methods for extending communication capabilities of a vehicle. The systems and methods enable a user equipment to facilitate communication between a vehicle and a central system, adding the vehicle as a node in the system.
US11026205B2

Apparatus and methods for registering and authenticating a client device with a wireless-enabled network. In one embodiment, the apparatus and methods provide an alternate wireless connectivity link to register an installed high-power fixed wireless apparatus (FWA) or Customer Premises Equipment (CPE) with a managed wireless network infrastructure, such as one utilizing “quasi-licensed” CBRS (Citizens Broadband Radio Service) wireless spectrum or another shared access approach. In one variant, the alternate wireless link comprises a mobile cellular channel established via an application program executing on a mobile device. In another variant, an Internet of Thing Network (IoT) is used for the alternate link. In one implementation, spectrum grants are communicated back the FWA/CPE via the alternate link to enable subsequent CBRS-band high-power operation.
US11026204B2

A method of operating a wireless device may be provided. A wireless device may receive a release message from a network node of a radio access network. The release message may include an identification of a redirected carrier. In response to the release message omitting synchronization block related parameters for the redirected carrier, the wireless device may check in measurement information configured for the wireless device for the synchronization block related parameters for the redirected carrier; and may perform synchronization signal measurements for the redirected carrier using the synchronization block related parameters in the measurement information.
US11026203B2

In accordance to embodiments, methods, devices, and systems for determining initial transmissions in grant-free transmissions are disclosed. A UE receives a resource configuration for grant-free (GF) transmissions. The resource configuration comprises a periodicity parameter (P), a repetition number (K), and a sequence of redundancy version (RV) numbers corresponding to one or more RV types. The periodicity parameter defines a period having K transmission occasions (TOs), and each of the KTOs is associated with one RV number in the sequence of RV numbers. The UE performs an initial GF transmission of data in a TO of the K TOs in the period defined by the periodicity parameter. The TO is associated with an RV number corresponding to RV0.
US11026201B2

A method and apparatus for synchronization in an orthogonal frequency division multiplexing (OFDM) network is disclosed. A wireless transmit/receive unit (WTRU) is configured to receive a primary synchronization signal and a secondary synchronization signal from a cell. The primary synchronization signal and the secondary synchronization signal are spaced by a known number of OFDM symbols. The primary synchronization signal and the secondary synchronization signal are received in a same number of subcarriers in their respective OFDM symbol. A location of at least the secondary synchronization signal in the system bandwidth is variable.
US11026196B2

Disclosed is an apparatus and method for synchronization of sensing operations performed by a plurality of devices. The method may include collecting sensing capabilities of one or more connected devices that are communicably coupled with a central device. Each connected device may include one or more sensors, and the sensing capabilities may include at least sensor type and sensing interval for each sensor. The method may also include coordinating sensing operations performed by the central device and the one or more connected devices.
US11026188B2

A communication system for an altitude changing object is provided. The communication system can include an antenna system having one or more antennas. The one or more antennas can be associated with a single fixed radiation pattern. The communication system can include one or more processors configured to execute a control routine to perform operations. The operations can include obtaining data indicative of one or more communication parameters associated with the altitude changing object. The operations can include determining a transmit power for each of the one or more antennas based at least in part on the one or more communication parameters. The operations can include controlling the antenna system based at least in part on the transmit power to communicate with a node in the communication network.
US11026185B2

A communication apparatus includes: signal generation circuitry which, in operation, generates a control signal including a target reception power value regarding a target value of a reception power for the communication apparatus to receive an uplink (UL) response frame transmitted by each of one or more terminal stations, the control signal being a trigger frame that solicits transmission of the UL response frame from each of the one or more terminal stations; and transmission circuitry which, in operation, transmits the generated signal.
US11026182B2

To efficiently transmit a power headroom. An apparatus includes a receiver configured to receive first information and receive a physical downlink control channel, the first information including a resource configuration of one or more sounding reference signals, and a transmitter configured to transmit information indicating a first power headroom level for a physical uplink shared channel associated with a sounding reference signal resource index included in downlink control information carried on the downlink control channel, and transmit information indicating a second power headroom level for a physical uplink shared channel associated with a sounding reference signal resource index not included in the downlink control information carried on the downlink control channel.
US11026178B2

A technique of operating a wireless communication system includes determining respective geometries of multiple subscriber stations, which include a first subscriber station and a second subscriber station, with respect to a serving base station. Respective channel sounding bandwidths for sounding the channel between the multiple subscriber stations and the serving base station are then scheduled, based on the respective geometries. The respective channel sounding bandwidths include a first channel sounding bandwidth (associated with the first subscriber station) and a second channel sounding bandwidth (associated with the second subscriber station). The first channel sounding bandwidth is greater than or equal to the second channel sounding bandwidth and the first subscriber station has a lower geometry than the second subscriber station.
US11026175B2

Systems, methods, and devices enable coexistence of traffic for collocated transceivers. Methods may include generating, using a processing device, a target-wake-time (TWT) agreement, the TWT agreement being determined based on availability of a first transceiver and a plurality of wireless devices. The methods may also include generating, using the processing device, a medium access schedule for the first transceiver based on a transmission parameter of a second transceiver, the second transceiver being collocated with the first transceiver and sharing a transmission medium with the first transceiver, and the medium access schedule being a TWT schedule. The methods may further include transmitting the TWT schedule to the plurality of wireless devices, the TWT schedule identifying a plurality of wake times and a plurality of sleep times to the plurality of wireless devices.
US11026172B2

This disclosure provides systems, methods and apparatus, including computer programs encoded on computer storage media, for establishing communications with one or more devices. In one aspect, a first device generates a wake-up radio (WUR) frame, the WUR frame including a media access control (MAC) header and a frame check sequence (FCS) having a cyclic redundancy check (CRC) or a message integrity check (MIC). The first device may determine the FCS based, at least in part, on the MAC header and basic service set identifier (BSSID) information associated with the first device. The first device may output the WUR frame for transmission to one or more devices. A second device may receive the WUR frame from the first device and determine whether the WUR frame is directed to the second device based, at least in part, on comparing the FCS of the WUR frame with a calculated FCS.
US11026161B2

Methods and apparatus are proposed for controlling a radio access network connection to a telecommunications network. In order to enable resource based access barring a wireless terminal performs a delay in proceeding with a radio network access procedure based on an obtained indication of access barring. The access barring is a resource based access barring; based on the resource usage of a wireless terminal.
US11026147B2

User equipment (UE) includes processing circuitry, where to configure the UE for Single Radio Voice Call Continuity (SRVCC) handover from an LTE network to a legacy network with circuit switched (CS) communications, the processing circuitry is to encode a Session Description Protocol (SDP) message for transmission to a second UE within the LTE network. The SDP message includes a voice codec selection for voice over LTE communication with the second UE and a maximum end-to-end packet loss rate (E2E_MAX_PLR) that can be tolerated by the UE when using the voice codec. The UE decodes an SRVCC handover command from an eNB within the LTE network, the handover command based on at least one packet loss rate (PLR) associated with a packet switched voice communication link between the UE and the second UE exceeding a PLR threshold that is determined based on the E2E_MAX_PLR that can be tolerated by the UE.
US11026145B2

A method and a device for adaptive channel access are disclosed. In an embodiment includes adaptively adjusting, by a small base station (SBS), access parameters for small cells to ensure quality of service (QoS) to cellular users while minimizing collision probability for WiFi users.
US11026140B2

A method for managing a terminal context and a device for supporting the same are presented. The method comprises the steps of: receiving, from a first base station, a data forwarding indicator for indicating uplink data to be forwarded when the uplink data is generated; receiving uplink data from a terminal in an RRC inactive state; and forwarding, to the first base station, the uplink data according to the data forwarding indicator.
US11026138B1

A mechanism for controlling a measurement threshold used for triggering handover of a user equipment device (UE) when the UE is connected with a first access node, the first access node operating on a first frequency band and a second frequency band, and a second access operating on the second frequency band. A determination is made as to whether the UE supports inter-band dual-connectivity service with the UE being connected with the first access node on the first band and with the second access node on the second band. And responsive to the determination being that the UE does not support the inter-band dual-connectivity service, the measurement threshold is adjusted from a default level to an adjusted level to help facilitate handover of the UE from being connected with the first access node on the first band to being connected with the first access node instead on the second band.
US11026134B2

The present invention relates to a method and an apparatus for supporting a handover and, more particularly, to a method and an apparatus for changing a mobile management entity while maintaining a connection state of a connection mode terminal. In order to achieve the above-mentioned objective, a method for supporting a handover of a serving mobile management entity (MME) according to one embodiment of the present invention comprises the steps of: receiving a tracking area update (TAU) request message from a terminal: determining whether the serving MME of the terminal needs to be changed, on the basis of the TAU request message; and transmitting, in the case where it is determined that the serving MME of the terminal needs to be changed, an MME change request message to an eNB.
US11026132B2

Disclosed by the embodiments of the present application are a communication method, core network device, access network device, terminal device, and communication system. Said communication method comprises: the core network device determining an access network device set, said access network device set comprising at least one access network device already accessed by the terminal device; said core network device and each access network device in said access network device set establishing a network connection for said terminal device. By means of the technical solution of the present application, each access network device in the access network device set establishes a network connection for the terminal device in advance, thereby allowing the terminal device to move within a range of coverage of at least one access network device, reducing communication delays.
US11026125B2

In a device including a processor and a memory in communication with the processor, the memory includes executable instructions that, when executed by the processor, cause the processor to control the device to perform functions of connecting a remote device to a network via a first channel associated with a first tier level; determining that a tier level switch condition is met; sending, to a controller of the network, a request for tier level switch from the first tier level to a second tier level; receiving, from the controller of the network, an authorization for switching from the first tier level to the second tier level; and connecting the remote device to the network via a second channel associated with the second tier level.
US11026116B2

The method for a user equipment (UE) generating a buffer status report (BSR) comprises receiving logical channel configuration information from a network, the logical channel configuration information including information related to a plurality of numerologies mapped to each logical channel; when the BSR is triggered, calculating a buffer size of each numerology based on the logical channel configuration information; and generating a BSR including buffer size information of at least one numerology in decreasing order of numerology priority.
US11026111B2

Provided are a method for a terminal for reporting a measurement result in a wireless communication system, and an apparatus supporting the method. The method may comprise the steps of: receiving a measurement configuration comprising a measurement object and reporting configuration; measuring a first wireless local area network (WLAN) included in the measurement object and a second WLAN not included therein; including the measurement result for the first WLAN in a measurement results list; and, following the inclusion of the measurement result for the first WLAN in the measurement results list, determining whether the measurement result for the second WLAN can be included in the measurement results list.
US11026108B2

Where elements in a utility supply network are dependent upon another element for their proper operation, determining, by reference to user queries about network performance, whether there are faults in the dependent elements or a fault in the element upon which the dependent elements rely.
US11026107B2

Embodiments of the present application provide a data transmission method and a terminal device. The method includes: obtaining, by a terminal device, a first indication; and monitoring, by the terminal device, a physical channel within a preset first time region to obtain a second indication, where the first indication and the second indication are used by the terminal device to determine a resource for data transmission.
US11026104B2

Systems and methods presented herein provide for improving communications when encountering aggressive communication systems. In one embodiment, a communication system includes a WAP operable to link a UE to a communication network via a communication protocol and a communications processor operable with the WAP to detect another communication system operating within a range of the WAP, and to determine that the other communication system is operating via another communication protocol that differs from the communication protocol of the communication network based on UEs in range of the WAP. The UEs are operable to communicate via both communication protocols. The communications processor queries the UEs in the range of the WAP to determine which of the UEs are communicating via the other communication protocol, and estimates a rate of successful communication with the UE via the WAP based on a number of UEs communicating via the other communication protocol.
US11026101B2

An electronic device may receive discontinuous reception (DRX) cycle information from a first cell, may receive synchronization signal block measurement timing information including synchronization signal block measurement window information and synchronization signal block measurement period information, and may receive at least part of a first synchronization signal block from the first cell and at least part of a second synchronization signal block from a second cell neighboring the first cell, at a period indicated by the DRX cycle information based on the synchronization signal block measurement timing information. When reception timing of the first synchronization signal block and reception timing of the second synchronization signal block is less than a specified time duration, the device may receive the at least part of the first synchronization signal block in a first measurement window, and may receive the at least part of the second synchronization signal block within a second measurement window.
US11026100B2

A system, in an active reflector device, adjusts a first amplification gain of each of a plurality of radio frequency (RF) signals received at a receiver front-end from a first equipment via a first radio path of an NLOS radio path. A first phase shift is performed on each of the plurality of RF signals with the adjusted first amplification gain. A combination of the plurality of first phase-shifted RF signals is split at a transmitter front-end. A second phase shift on each of the split first plurality of first phase-shifted RF signals is performed. A second amplification gain of each of the plurality of second phase-shifted RF signals is adjusted.
US11026097B2

Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a device may select a plurality of channel access intervals during which the device is associated with a priority condition relative to another device for communications by the device, wherein each of the plurality of channel access intervals includes a respective contention interval and a respective transmission opportunity; and may transmit, during a contention interval of a first channel access interval of the plurality of channel access intervals, a signal that includes: channel occupancy information for the device for a first transmission opportunity of the first channel access interval, and information that identifies at least a portion of one or more subsequent channel access intervals, of the plurality of channel access intervals, associated with the device. Numerous other aspects are provided.
US11026093B2

Provisioning a requesting device is provided using extended identity attestation for the requesting device. A provisioning request is received at a device provisioning system. The provisioning request includes a registration identifier provided by the requesting device. A plurality of extended attestation components is accessed in an enrollment datastore of the device provisioning system. Each extended attestation component identifies an external computing system. One of the extended attestation components in the enrollment datastore is selected based on the received registration identifier. Execution of the device attestation is initiated at the external computing system identified by the selected extended attestation component to yield an attestation result. Satisfaction of a validity condition by the attestation result is detected. The requesting device is provisioned from the device provisioning system, responsive to detection that the attestation result satisfies the validity condition.
US11026091B2

The present application provides a data transmission method in a wireless communication system. A first security parameter indication is introduced into uplink data on a first bearer, and a base station can determine, based on the first security parameter indication in the uplink data, whether first security processing of the uplink data is performed using a first security parameter or a second security parameter, so as to select a corresponding security parameter to perform second security processing; and a second security parameter indication is introduced into downlink data, and UE can determine, based on the second security parameter indication in the downlink data, whether the first security processing of the data is performed using the first security parameter or the second security parameter, so as to select a corresponding security parameter to perform the second security processing.
US11026088B2

A wireless LAN communication system which achieves convenience where a terminal of a user who is external to an organization can temporarily use the system while ensuring security. For example, a first terminal is used by a user internal to an organization and a second terminal is used by a user external to the organization. A communication device has a display function and the first terminal connects to the communication device via a wireless LAN access point device. The second terminal connects, under permission from the first terminal, to the communication device via the wireless LAN access point. The second terminal uses the display function of the communication device through the connection via the wireless LAN access point. The first terminal and the communication device confirm whether the permission is to be continued or terminated to make the second terminal unable to use the display function.
US11026086B2

Non-pre-provisioned cellular Internet of things (IoT) devices can be added to an existing user's subscription with an operator and a service provider. The procedure can include obtaining a security association between a device and a user's smartphone using the operator's network. The operator and the service provider can verify the device with a certificate authority. In one embodiment, the smartphone reads (302) a URL pointer to the device certification and sends it (304) to the MME. The MME forwards (306) the URL to the HSS. The HSS verifies (312) the certificate and derives security credentials including the Master key K′. The HSS also derives another key K″ used to establish security context between the IoT device and the smartphone. The device uses its key deriving function KDF with K′ and Rand to generate K″.
US11026082B1

A wireless device identification system including one or more sensors each having at least one software defined radio to receive signals transmitted between one or more wireless devices and a mobile wireless device, one or more processors, and one or more memory devices. The one or more memory devices having stored thereon instructions that when executed by the one or more processors cause the one or more processors to capture cellular information, Wi-Fi information, Bluetooth information, and local network information from the received signals. The instructions can include correlating the captured information to the mobile wireless device by creating a weighted edge relationship graph having a plurality of nodes, including a node corresponding to each of the cellular information, the Wi-Fi information, the Bluetooth information, and the local network information, and determining an association strength between each node of the relationship graph.
US11026081B2

An eSIM management platform may receive service feature information on multiple remote SIM provisioning (RSP) platforms that are designated by a mobile network operator (MNO) to distribute embedded subscriber identity module (eSIM) profiles for a partner MNO of the MNO. The eSIM management platform may evaluate multiple RSP platforms based on one or more service features of each RSP platform to select one or more RSP platforms of the multiple RSP platforms for population into a list of preferred RSP platforms for the geographical area. The eSIM management profile may send the list of preferred RSP platforms to a user device to configure the user device to use an eSIM profile provided by an RSP platform of the one or more RSP platforms. The user device may use the eSIM profile to obtain telecommunication services from the partner MNO while the user device is in a geographical area.
US11026075B2

Apparatuses and methods provide for scheduling downlink control information in a wireless network. The apparatuses and methods may determine at least one control message for a user equipment and a downlink grant to be scheduled, and schedule transmission of one of the at least one control message with the downlink grant to precede transmission of related data on a downlink data channel. The apparatuses and methods may alternatively schedule a control message other than downlink grant for a user equipment, determine a downlink grant to be scheduled, and schedule a control message with the downlink grant to end last among all control messages in a search space. The apparatuses and methods may further alternatively schedule control messages for a user equipment, including one control message with a downlink grant and scheduled to end at the same time as or a later time than other control messages in a search space.
US11026068B2

A wireless sensor communication system for an enclosure includes a communication gateway and communication nodes within the enclosure. Each communication node includes a processor, a sensor, and a communication module. Each of the communication nodes is configured to wirelessly transmit information within the enclosure to another one of the communication nodes, and at least one of the communication nodes has an obstruction with the communication gateway impeding direct wireless communication with it. The communication nodes are configured to aggregate information received from obstructed communication nodes and wirelessly transmit the aggregated information. The aggregation of information for transmission provides for hopping communication to send sensor data or other information from the obstructed communication nodes to the communication gateway via other communication nodes.
US11026065B2

A server according to an embodiment of the disclosure may include at least one processor and storage, wherein the at least one processor may be configured to receive beacon information including information on at least one website from the electronic device, collect data from a first website of the at least one website based on the beacon information, generate content having a structured document format based on at least a part of the collected data, and transmit the generated content to the electronic device.
US11026062B2

This disclosure relates to techniques for managing mobile-terminating short message service re-transmissions for wireless devices. A cellular network entity of a cellular network may receive a request to provide a short message service message to a wireless device. The wireless device may be registered with the cellular network entity via at least two access types. An attempt to provide the short message service message to the wireless device via a first access type may be performed. An attempt to provide the short message service message to the wireless device via a second access type may be performed if the attempt to provide the short message service message to the wireless device via the first access type is unsuccessful.
US11026059B2

An apparatus and method for broadcast signal frame using layered division multiplexing are disclosed. An apparatus for generating broadcast signal frame according to an embodiment of the present invention includes a combiner configured to generate a multiplexed signal by combining a core layer signal and an enhanced layer signal at different power levels; a power normalizer configured to reduce the power of the multiplexed signal to a power level corresponding to the core layer signal; a time interleaver configured to generate a time-interleaved signal by performing interleaving that is applied to both the core layer signal and the enhanced layer signal; and a frame builder configured to generate a broadcast signal frame including a preamble for signaling, start position information of Physical Layer Pipes (PLPs) and time interleaver information shared by the core layer signal and the enhanced layer signal.
US11026057B2

Methods and systems for sending multicast messages are disclosed. A multicast message is received to be transmitted to a plurality of access terminals at a radio access network (RAN), the received multicast message having a first format. The first format may correspond to a conventional multicast message format. The RAN determines whether the received multicast message requires special handling. If the RAN determines the received multicast message requires special handling, the radio access network converts the received multicast message from the first format into a second format. The RAN transmits the converted multicast message with the second format (e.g., a data over signaling (DOS) message) on a control channel to at least one of the plurality of access terminals. The access terminals receiving the converted multicast message interpret the message as a multicast message.
US11026053B2

An information processing system includes a first device, a second device, and a notification unit. The first device includes a position sensor and a communication unit. The second device includes a position sensor and a communication unit. The notification unit transmits, in a case where a relative distance between the first device and the second device calculated based on positional information detected by the position sensors exceeds a limit value, an alert to at least one of the first device and the second device.
US11026038B2

A device to perform audio signal equalization includes one or more processors configured to receive impulse response data corresponding to multiple audio channels. Each audio channel is associated with a corresponding microphone of multiple microphones of an audio device and indicative of sound propagation from one or more speakers of the audio device to the corresponding microphone. The one or more processors are configured to generate equalization filter data that is based on the impulse response data and that is indicative of multiple equalization filters. Each of the equalization filters is associated with a corresponding audio channel of the multiple audio channels. The one or more processors are also configured to process the equalization filter data to determine a playback equalization filter to be applied to an audio playback signal prior to playout at the one or more speakers.
US11026030B2

An earpiece for a hearing device, includes: an earpiece housing comprising an ear canal portion and an outer ear portion, the ear canal portion extending along an ear canal axis for positioning in an ear canal of a user, the ear canal portion having a first end; a first microphone for detecting ambient sound via a first input port in the earpiece housing; a second microphone; and a receiver for providing an audio output signal to the ear canal when the earpiece is inserted in an ear of the user; wherein the first microphone is arranged at a first distance from the first input port, wherein the first distance is at least 2 mm when measured parallel to a main plane having a main plane normal parallel to a main axis, the main axis forming a first main angle that is less than 30 degrees with the ear canal axis.
US11026029B2

A hearing aid having an electrical assembly, the electrical assembly includes a printed circuit board having a first board surface and a second board surface, the printed circuit board having a first pad in a first pad region on the first board surface, the first pad region having a first board normal; a flexible printed circuit board comprising an antenna, the antenna having a first terminal in a first terminal region on a first flexfilm surface of the flexible printed circuit board, the first terminal region having a first terminal normal; and first electrically conductive material connecting the first pad and the first terminal, and wherein the first terminal normal and the first board normal forms a first angle that is anywhere from 30° to 150°.
US11026028B2

An audio streaming system including an audio streamer connected to an audio source, and at least one ear worn device. The audio streamer includes a first antenna with a first polarization, a second antenna with a second polarization, and a radio configured for transmitting a first audio stream signal (30) from the first antenna and a second audio stream signal (31) from the second antenna. The first audio stream signal (30) and the second audio stream signal (31) carry the same audio information and are shifted in time. At least one ear worn device is configured to receive the first audio stream signal (30) and the second audio stream signal (31), compare the signal strength of the first audio stream signal (30) and the second audio stream signal (31), and select either the first audio stream signal (30) and the second audio stream signal (31) as input for audio reception.
US11026026B2

A sensing device comprises a charge pump, a MEMS sensor, a source follower and a PGA. The charge pump is configured to provide a pump voltage. The MEMS sensor is electrically connected to the charge pump and configured to generate an input voltage according to environment variations. The source follower is electrically connected to the MEMS sensor and configured to generate a followed reference voltage according to the pump voltage and to generate a followed input voltage according to the input voltage. The PGA has an input end of the PGA electrically connected to the source follower and is configured to generate two-ended differential output voltages outputted through a first output end and a second output end according to a difference between the followed reference voltage and the followed input voltage.
US11026025B2

A speaker includes a holder, a magnetic circuit unit, and a vibration unit including a diaphragm, a voice coil, and a centering support plate. The centering support plate is fixed to a side of the voice coil facing away from the diaphragm. One end of the centering support plate fixed to the voice coil is provided with a pad electrically connected to the voice coil. The diaphragm includes a central portion, a suspension portion surrounding the central portion, and a dome fixed to the central portion. The dome includes a body attached to the central portion, and a connection portion extending from an edge of the body towards the pad and fixedly connected to the pad. With the connection portion, the pad of the centering support plate can be fixed, preventing the tone quality of the speaker from being damaged by the pad, and t reducing noise.
US11026018B2

An audio speaker having a speaker housing surrounding a back volume that is divided into a rear cavity behind a speaker driver and an adsorption cavity separated from the rear cavity by a permeable partition, is disclosed. More particularly, the adsorption cavity may be defined between the speaker housing and the permeable partition, and may be directly filled with adsorptive particles to adsorb gas during sound generation. The permeable partition may allow the gas to flow between the rear cavity and the adsorption cavity, and may retain the adsorptive particles within the adsorption cavity. Other embodiments are also described and claimed.
US11026006B2

A method of manufacturing a speaker grill for a vehicle includes coating a coating layer by depositing metal on one side of a steel sheet; pre-etching including forming a first masking layer on one portion of the coating layer, etching the other portion of the coating layer on which the first masking layer is not formed, and removing the first masking layer to form a first etched steel sheet; and performing hole etching including forming a second masking layer on one portion of the first etched steel sheet where the coating layer is present, etching the other portion of the first etched steel sheet on which the second masking layer is not formed, and removing the second masking layer to form a second etched steel sheet, wherein a total area of the first masking layer is smaller than a total area of the second masking layer.
US11026005B2

A loudspeaker system can have first and second loudspeakers selectively operable in a single-channel mode or in a multi-channel mode. In the single-channel mode, the first and the second loudspeakers are configured to simultaneously reproduce a substantially identical signal. In the multi-channel mode, the first loudspeaker reproduces a first-channel signal and the second loudspeaker reproduces a second-channel signal. The first-channel signal and the second-channel signal can constitute respective portions of a multi-channel signal. Such loudspeaker systems can also have a mode selector configured to select one of the single-channel mode and the multi-channel mode. In some embodiments, such selection can occur in response to one or more detected proximities of another loudspeaker system. Multi-zone loudspeaker systems are also disclosed.
US11026003B2

Disclosed is an optical network unit (ONU) capable of reporting current Dynamic Bandwidth Report upstream (DBRu) information to an optical line terminal (OLT) according to the amount variation of to-be-transmitted upstream data in a buffer. The ONU includes: the buffer temporarily storing the to-be-transmitted upstream data; a register circuit recording previous data amount information related to the previous data amount of the buffer at a previous time point earlier than a current time point; a DBRu information generating circuit generating the current DBRu information according to an amount difference and a current data amount of the buffer at the current time point, wherein the amount difference is dependent on the difference between the previous data amount information and current data amount information that is dependent on the current data amount; and a transmitting circuit transmitting the current DBRu information to the OLT.
US11025989B2

Apparatus and associated methods relate to a live event video stream service configured to distribute event video streams at diverse price levels, based on configuring video cameras to capture live event video streams from different locations, offering the video streams for purchase at prices based on the camera locations, and automatically maximizing profit by adjusting the quantity and price of the offered camera video streams. In an illustrative example, the cameras may be 360-degree video cameras. The camera locations may be, for example, preferred event viewing positions. In some examples, the cameras may be configured in live event viewing positions ranging from more preferred to less preferred, permitting a range of video stream prices determined based on each camera's position. Some embodiments may determine video stream price based on an auction. Various examples may advantageously maximize event profit based on adjusting the quantity and price of the offered video streams.
US11025987B2

In some embodiments, a method receives playback information for a plurality of representations based on one or more videos being played at a media player. The plurality of representations have at least one different characteristic that affects playback of the video. A dropped-frame measurement is predicted for the plurality of representations based on the playback information. Then, the dropped-frame measurement is compared to a threshold for the plurality of representations. The method marks a first set of the plurality of representations as not being available based on the comparing. A second set of the plurality of representations are provided to the media player when the media player requests a video for playback and the first set of the plurality of representations for the video are blocked from being requested by the media player.
US11025976B2

Aspects of the subject disclosure may include, for example, a device having a processing system including a processor and a memory that stores executable instructions that, when executed by the processing system, facilitate performance of operations, the operations including: receiving an operational state of an audiovisual player of a client device, wherein the operational state comprises a foreground operational state or a background operational state; and sending an ad placement request comprising the operational state to a decision server for a content request for advertisement content. Other embodiments are disclosed.
US11025975B2

An advertisement management system receives a commercial break schedule generated from a completed assignment of one or more spots, which correspond to deals including advertiser orders to place the one or more spots into one or more commercial breaks in the commercial break schedule based on constraints and placement requirements. The system determines which of one or more orders in one or more deals are targeting orders, and determine a baseline target delivery for the targeting orders based on expected viewership associated with the targeting orders. The system places a portion of the one or more spots for the targeting orders based on a lift goal over the baseline target delivery, determines a liability per pending spot for spots determined to be candidates for advertisement scheduling and reshuffles placement of a remaining portion of the one or more spots based on the liability per pending spot for the candidates.
US11025972B2

A method and system for comparing video and audio information at first and second spaced-apart locations on a content distribution network. Network probes are located on the network and extract a respective first and second plurality of video frames and audio segments. Two fingerprints sequences are determined from each one of the frames and segments, then the sequences are matched and time-aligned. A beginning of a matched segment is determined and the individual fingerprints within each of the fingerprint sequences are compared from the beginning of the matched segment. Fingerprints that are determined to be different during the comparison process indicate a change in video or audio content between the two probes.
US11025970B2

Systems and methods for controlling network bandwidth utilization by media streaming services are provided. According to one embodiment, a data stream associated with streaming media content being requested from an external service provider by a client device associated with a private network is intercepted by a network manager associated with the private network. Streaming options made available for streaming the streaming media content are limited by the network manager by: (i) identifying a policy applicable to the data stream; (ii) identifying a manifest specifying multiple versions in which the streaming media content is available to be streamed, within the data stream; (iii) determining the multiple versions by parsing the manifest; (iv) determining a prohibited version that exceeds a bandwidth limitation specified by the policy; (v) updating the manifest by removing information regarding the prohibited version from the manifest; and (vi) providing the updated manifest to the client device.
US11025969B1

A content streaming system and methodology for facilitating the management of content streaming. A content delivery service receives streaming content that is encoded according to an encoding profile. The content delivery service decodes the received encoded content and encodes the decoded content according to a plurality of encoding profiles. Additionally, the content delivery service reuses the received encoded content stream from the content provider.
US11025968B2

Audio splicing is rendered more effective by the use of one or more truncation unit packets inserted into the audio data stream so as to indicate to an audio decoder, for a predetermined access unit, an end portion of an audio frame with which the predetermined access unit is associated, as to be discarded in playout.
US11025959B2

A method includes receiving head-tracking data that describe one or more positions of people while the people are viewing a three-dimensional video. The method further includes generating a probabilistic model of the one or more positions of the people based on the head-tracking data, wherein the probabilistic model identifies a probability of a viewer looking in a particular direction as a function of time. The method further includes generating video segments from the three-dimensional video. The method further includes, for each of the video segments: determining a directional encoding format that projects latitudes and longitudes of locations of a surface of a sphere onto locations on a plane, determining a cost function that identifies a region of interest on the plane based on the probabilistic model, and generating optimal segment parameters that minimize a sum-over position for the region of interest.
US11025949B2

A temporal merging motion information candidate generation unit derives, when information indicating whether or not to derive a temporal merging motion information candidate shared for all prediction blocks in a coding block is information indicating the derivation of a temporal merging motion information candidate shared for all the prediction blocks in the coding block, a temporal merging motion information candidate shared for all the prediction blocks in the coding block from a prediction block of a coded picture different from a picture having a prediction block subject to coding. A merging motion information candidate list construction unit generates a plurality of merging motion information candidates including a temporal merging motion information candidate.
US11025941B2

Methods are provided for inter-prediction candidate index coding independent of the construction of the corresponding inter-prediction candidate list, i.e., a merging candidate list or an advanced motion vector predictor list. A maximum allowed number of inter-prediction candidates for an inter-prediction candidate list is used for encoding the inter-prediction candidate index in an encoded bit stream. The maximum allowed number may be pre-determined or may be selected by the encoder and encoded in the bit stream. A decoder may then decode the index using the maximum allowed number of inter-prediction candidates independent of the construction of the corresponding inter-prediction candidate list.
US11025939B2

The present technology relates to a decoding device and a decoding method, and an encoding device and an encoding method that enable images that configure a packed image to be reliably displayed when an encoded stream is decoded and displayed. A decoding unit decodes an encoded data, the encoded data being an encoded packed image in which a plurality of images is packed, and generates the packed image. A display control unit identifies the images that configure the packed image based on packing SEI preferentially used when the packed image is displayed. The present technology can be applied to a decoding device, for example.
US11025934B2

A host processor, such as a central processing unit (CPU), programmed to execute a software driver that causes the host processor to generate a motion compensation command for a plurality of cores of a massively parallel processor, such as a graphics processing unit (GPU), to provide motion compensation for encoded video. The motion compensation command for the plurality of cores of the massively parallel processor contains executable instructions for processing a plurality of motion vectors grouped by a plurality of prediction modes from a re-ordered motion vector buffer by the plurality of cores of the massively parallel processor.
US11025930B2

An excellent display can be performed even when the frame rate changes dynamically at the reception side. When a switching portion at which a sequence of video streams to be transmitted is switched from a first sequence to a second sequence having a different frame rate from the first sequence is provided, display control information is inserted into at least encoded image data of a picture corresponding to the switching portion or a packet containing the encoded image data. A reception side performs display control of pictures using the display control information and implements an excellent display.
US11025929B2

An interleaved multi-layered video data stream with interleaved decoding units of different layers is provided with further timing control information in addition to the timing control information reflecting the interleaved decoding unit arrangement. The additional timing control information pertains to either a fallback position according to which all decoding units of an access unit are treated at the decoded buffer access unit-wise, or a fallback position according to which an intermediate procedure is used: the interleaving of the DUs of different layers is reversed according to the additionally sent timing control information, thereby enabling a DU-wise treatment at the decoder's buffer, however, with no interleaving of decoding units relating to different layers. Both fallback positions may be present concurrently. Various advantageous embodiments and alternatives are the subject of the various claims attached herewith.
US11025922B2

A method for inverse discrete cosine transformation (IDCT) in video coding is provided that includes receiving a transform block, identifying a region of non-zero transform coefficients in the transform block using a group significance map corresponding to the transform block, wherein any transform coefficients not in the region have a value of zero, applying a one-dimensional (1D) IDCT to the region of non-zero transform coefficients in a first direction to generate an interim results block, wherein 1D IDCT computations are not performed on transform coefficients outside the region, and applying a 1D IDCT to the interim results block in a second direction to generate a residual block.
US11025916B2

A method for encoding a multi-view frame in a video encoder is provided that includes computing a depth quality sensitivity measure for a multi-view coding block in the multi-view frame, computing a depth-based perceptual quantization scale for a 2D coding block of the multi-view coding block, wherein the depth-based perceptual quantization scale is based on the depth quality sensitive measure and a base quantization scale for the 2D frame including the 2D coding block, and encoding the 2D coding block using the depth-based perceptual quantization scale.
US11025912B2

Overlapped block disparity estimation and compensation is described. Compensating for images with overlapped block disparity compensation (OBDC) involves determining if OBDC is enabled in a video bit stream, and determining if OBDC is enabled for one or more macroblocks that neighbor a first macroblock within the video bit stream. The neighboring macroblocks may be transform coded. If OBDC is enabled in the video bit stream and for the one or more neighboring macroblocks, predictions may be made for a region of the first macroblock that has an edge adjacent with the neighboring macroblocks. OBDC can be causally applied. Disparity compensation parameters or modes may be shared amongst views or layers. A variety of predictions may be used with causally-applied OBDC.
US11025904B2

A method of video decoding for a decoder includes acquiring a current picture from a coded video bitstream. The method further includes selecting a first neighboring block from a plurality of neighboring blocks of a current block in the current picture. The method further includes determining, based on a motion vector predictor of the selected first neighboring block, a candidate block that is included in a previously decoded picture and that is one of (i) neighboring to a collocated block of the current block and (ii) within the collocated block. The method further includes performing temporal motion vector prediction for the current block based on a motion vector predictor of the candidate block.
US11025894B2

In a left and right pair of a first display device and a second display device that perform repositionable display, mutually different display contents can be visually recognized as a first video image and a second video image. Further, a display control portion controls the display content in accordance with at least one of the first video image and the second video image.
US11025892B1

System and methods for providing simultaneous public and private video, where a private viewer looking through an eye filter perceives the private video while a public viewer not looking through an eye filter perceives the public video. First a public image is generated and linearly polarized. The public image is then modulated to further encode a private image using an additional liquid crystal modulating layer. The modulated public image including the encoded private image is then received and filtered by various embodiments of passive or active eye filters comprising various combinations of spatial, temporal or spatial-temporal filters. The eye filters optionally include identifying means such that the system provides customized private images to selected eye filters. Means for providing private audio simultaneous with the private video are also shown. The system can be implemented as either a display or a projector and used in a destination-wide gaming system.
US11025879B2

An image processing apparatus generates a plurality of virtual viewpoint images being temporally consecutive, and includes a data acquisition unit, a parameter acquisition unit, a viewpoint acquisition unit, and a generation unit. The data acquisition unit is configured to acquire image data that is obtained by capturing images in a plurality of directions by a plurality of image capturing devices. The parameter acquisition unit is configured to acquire a parameter related to the acquired image data and related to quality of the plurality of virtual viewpoint images. The viewpoint acquisition unit is configured to acquire viewpoint information representing a moving path of a virtual viewpoint. The generation unit is configured to generate the plurality of virtual viewpoint images according to a virtual viewpoint having a moving speed based on the acquired image data. The moving speed being determined based on the acquired parameter and the acquired viewpoint information.
US11025864B2

A method of video conference communication between N terminals of N users is described. The method can be implemented by one of the N terminals, and can include receiving, from a processing device, N audiovisual streams respectively transmitted by the N terminals, N items of voice activity information of the N users, respectively associated with N corresponding user identifiers, each of the N items of information assuming a first or a second value respectively representing the presence or absence of voice activity. The method can also include determining, for at least one of the N users, whether or not the information is at the same value from a certain time. The method can also include requesting, from the device upon determining that the information is at the first value from this time, a stream associated with the user as the main stream to be displayed, receiving, and displaying the main stream.
US11025859B2

A vehicular multi-camera vision system includes a plurality of cameras and an electronic control unit. The cameras are disposed at a vehicle and have respective fields of view exterior of the vehicle. The cameras are operable to capture image data. The ECU includes an image processor and a DC power supply. The cameras are connected with the ECU via respective coaxial cables. Each respective coaxial cable carries (i) captured image data from the respective camera to the ECU, (ii) camera control data from the ECU to the respective camera and (iii) electrical voltage for powering the respective camera. The camera control data is carried by the respective coaxial cable from the ECU to the respective camera by a signal having a frequency outside of the bandwidth of the captured image data carried by the respective coaxial cable from the respective camera to the ECU.
US11025858B2

The disclosed method includes accessing video content encoded at a specified frame rate, and determining a refresh rate for an electronic display on which the video content is to be presented. The method next includes specifying a time interval for the video content over which frame rate conversion is to be applied to synchronize the video content frame rate with the electronic display refresh rate. The method also includes presenting the video content on the electronic display where the playback speed is adjusted for a first part of the interval. At this adjusted speed, the interval is played back using original video frames and multiple frame duplications. The presenting also adjusts playback speed of a second part of the interval. At the adjusted speed, the interval is played back using the original frames and a different number of frame duplications. Various other methods, systems, and computer-readable media are also disclosed.
US11025857B2

Disclosed herein is a camera system including, a camera apparatus having, an image sensor, a correction section, a first transmission processing section, and a synchronization processing section, and a video processing apparatus having a second transmission processing section and a conversion section, wherein the video processing apparatus outputs the video data obtained by the conversion by the conversion section.
US11025856B2

An emergency alarm control circuit comprising: a processing circuit; and an emergency decoder, coupled to the processing circuit. The processing circuit is active, the emergency decoder is non-active when the emergency alarm control circuit operates in a standby mode. The processing circuit activates the emergency decoder to detect an emergency message for an active time period at least one time in the standby mode, and de-activates the emergency decoder when the emergency decoder does not receive the emergency message in the standby mode. The emergency alarm control circuit switches to an active mode when the emergency decoder receives the emergency message in the standby mode, and the processing circuit controls an emergency alarm system to generate an emergency alarm in the active mode.
US11025851B2

An image sensor including (a) an array of pixels, each of which includes: (a1) a photodetector; and (a2) a read-out circuit coupled to the photodetector and including an active amplifying element; and (b) pixel binning means configured to form macropixels such that, in each macropixel, the inputs of the read-out circuits of at least two pixels are coupled to one another, and the outputs of the read-out circuits of said pixels are coupled to the input of a single memory element including a capacitor; wherein the output of each read-out circuit is coupled to an input of a memory element that is different from those of the other pixels; and wherein the binning means include connection switches for the read-out circuits inserted between the read-out circuits and the memory elements.
US11025839B2

There is provided a camera apparatus including: a capturing unit that includes a lens to which light, from a capturing area including IR light and visible light is incident, and that performs capturing based on the light; an IR lighting unit that irradiates the capturing area with IR light; and a controller that generates an instruction to change a focal position of the lens and an instruction to adjust a quantity of the IR light, in which the controller calculates an IR light ratio which indicates a ratio of the quantity of the IR light to the light included in a captured image of the capturing area, and selects and performs any one of a first focusing processing to change the focal position of the lens corresponding to the IR light, a second focusing processing to change the focal position of the lens corresponding to the visible light, and an IR light quantity adjustment determination processing to determine whether or not to adjust the quantity of the IR light, based on the IR light ratio.
US11025837B2

Systems and methods are described for replacing a background portion of an image. An illustrative method includes receiving a first image, identifying a background portion of the first image and a subject portion of the first image, identifying a geographic location corresponding to the background portion of the first image, retrieving a plurality of other images depicting the geographic location, selecting a second image from the plurality of other images, wherein the second image is associated with metadata indicating that the second image was captured during a predetermined time period, and generating for display a third image comprising the subject portion of the first image placed over the second image.
US11025836B2

A driving assistance device includes a gaze detection unit that detects a gaze of a driver of a vehicle, an imaging selection unit that selects a first imaging unit corresponding to a direction of the gaze from among a plurality of first imaging units that image the periphery of the vehicle, and a display control unit that processes first captured image data obtained by imaging using the selected first imaging unit on the basis of second captured image data obtained by imaging using a second imaging unit that images the front of eyes of the driver and displays an image based on the first captured image data after the processing on a transmission type display unit fixed at the front of the eyes of the driver of the vehicle.
US11025828B2

There is provided an imaging control apparatus including a control section that creates a first image by performing exposing to a pixel with first exposure by a first exposure time and creates a second image by performing exposing to a pixel with second exposure by a second exposure time in succession to the first image and a synthesizing section that synthesizes a synthesized image in which the first image and the second image have been synthesized and a selected image selected from either the first image or the second image. The control section decides the first exposure time and the second exposure time such that an image to be selected as the selected image in the synthesizing section is switched over on a basis of an exposure ratio being a ratio of an exposure time of the synthesized image and an exposure time of the selected image.
US11025825B2

A system and method includes operations and steps for obtaining a moving endoscopic image. An optical device stream is received from an optical device by data processing hardware. The data processing hardware identify image frames of the image stream, each including a plurality of rows of pixels. The data processing hardware determines a row exposure value for each of the rows of pixels in each frame, and identifies a defective image frame having at least one overexposed row and a reference frame having a replacement row corresponding to the overexposed row. The data processing hardware modifies the defective image frame by replacing the overexposed row with the corresponding replacement row of the reference frame.
US11025822B2

The power consumption is reduced in an imaging apparatus that detects the presence or absence of an event. In a pixel array unit, a plurality of transfer transistors that transfer charges from mutually different photoelectric conversion devices to a floating diffusion layer is provided. A scan circuit simultaneously controls the plurality of transfer transistors in a pixel addition mode in which pixel addition is performed, to transfer the charges and sequentially controls the plurality of transfer transistors in a normal mode in which pixel addition is not performed, to transfer the charges. An event detection unit detects the presence or absence of a predetermined event on the basis of an addition signal which is an analog signal generated in the normal mode, and generates a detection result. A mode control unit sets one of the pixel addition mode and the normal mode on the basis of the detection result.
US11025818B2

To satisfactorily detect an edge detection signal of a high frequency band from a captured image signal at all times. A filtering unit extracts an edge detection signal of a high frequency band from an image signal obtained from imaging, and a band control unit controls the high frequency band on the basis of lens information. For example, the filtering unit includes a first high-pass filter with a first cutoff frequency, a second high-pass filter with a second cutoff frequency that is lower than the first cutoff frequency, and an α blending unit that performs α blending on output of the first high-pass filter and output of the second high-pass filter. Even if the frequency of the edge detection signal included in the captured image signal varies due to a change in a zoom position, a lens model number, an F value or the like, the edge detection signal can be satisfactorily detected at all times.
US11025817B2

An electronic device is disclosed. The disclosed electronic device comprises at least one camera module, a memory, and a processor electrically connected to the camera module and the memory, wherein the memory stores instructions that, when executed, cause the processor to store a first frame, which is generated using an image inputted through the camera module, as a first image in the memory, and if a degree of similarity between a second frame and a third frame, which are generated using the image inputted through the camera module, is equal to or greater than a predetermined value, cause the processor to generate a second image by synthesizing at least one frame comprising the second frame and the third frame and store the second image in the memory. Other various embodiments are also possible.
US11025815B2

An electronic device obtains one or more images of a scene. After obtaining the one or more images of the scene, the electronic device detects a plurality of objects within the scene, provides a first audible description of the scene, and detects a user input that selects a respective object of the plurality of objects within the scene. The first audible description of the scene provides information corresponding to the plurality of objects as a group. In response to the user input selecting the respective object within the scene, the electronic device provides a second audible description of the respective object. The second audible description is distinct from the first audible description and includes a description of one or more characteristics specific to the respective object.
US11025809B2

Systems and methods are disclosed for dual imaging module cameras. For example, methods may include: receiving a zoom control signal, receiving an input image that was captured using a first lens assembly of a dual imaging module, and determining, based on the zoom control signal, an intermediate lens distortion profile. The intermediate lens distortion profile has values that are between corresponding values of a first lens distortion profile for the first lens assembly and a second lens distortion profile for a second lens assembly of the dual imaging module. The method may include applying a warp based on the intermediate lens distortion profile to the input image to obtain an output image and transmitting, storing, or displaying an image based on the output image. For example, the systems and methods may eliminate or mitigate discontinuities in lens distortion at a switch-over between lens assemblies of a dual imaging module.
US11025808B2

There is provided a control apparatus including: a processing unit configured to decide, on a basis of object information indicating a state of an object, a plurality of imaging devices that image the objects such that each of all the objects included in a predetermined area imaged by the plurality of imaging devices falls within an angle of view at which the at least two or more imaging devices perform imaging, and control each of the plurality of imaging devices.
US11025806B2

An imaging apparatus includes a camera, a cover covering the camera and capable of changing reflectance of a surface thereof, and a control unit configured to control the reflectance of the surface of the cover so as to be switchable between a first mode and a second mode. The first mode causes light to reflect at the surface of the cover. The second mode causes light to pass through the cover and the reflectance in which is different from that in the first mode.
US11025803B2

An apparatus for capturing animal nose pattern images on a mobile device using a camera embedded in the mobile device and a mount unit attached to the mobile device that facilitates simple and secure attachment onto the mobile device. A shell unit connects and encloses a space between the animal nose and the camera of the mobile device. A lens attachment unit placed over the camera and having one or more lenses allows a regular mobile device camera to take animal nose pattern images with no internal hardware modification. An illumination unit provides additional light to improve an image quality. The mount unit is a mechanism by which the shell unit, the lens attachment unit and the illumination unit are fastened onto the mobile device.
US11025799B2

An image forming apparatus including: a light source configured to emit a light beam based on an image signal; a deflector configured to deflect the light beam so that the light beam emitted from the light source is scanned on a surface of a photosensitive member in a main scanning direction; a storage portion configured to store a first magnification of an image with respect to a scanning position in the main scanning direction; and a controller configured to generate a second magnification of the image with respect to a reference color image, wherein the controller generates a third magnification based on the first magnification corrected based on the second magnification and the second magnification to correct the image signal based on the third magnification.
US11025796B2

A sensor array assembly including a first sensor array, a second sensor array and a mounting substrate. The first sensor array includes a first process direction width and a first photosite, while the second sensor array includes a second process direction width and a second photosite. The first and second sensor arrays are separately secured on the mounting substrate. The first photosite is in precision alignment with the second photosite.
US11025792B2

An image processing apparatus includes a camera, an image reading unit, and a controller. The camera is configured to capture an image of a face of a person. The image reading unit is configured to read a document and to output a document image. The controller is configured to perform control to permit certain processing on the document image if the image of the face captured by the camera matches a face image extracted from the document image.
US11025791B2

An information processing apparatus is configured to control an operation to determine a type of a printing medium to be printed by a printing unit, determine a type of printing medium indicated by information input by an input unit as the type of the printing medium to be printed, and be capable of executing a measurement mode and a designation mode. In the measurement mode, the type of the printing medium to be printed is determined by using a measurement result and a reference characteristic values set in advance. In the designation mode, the type of the printing medium to be printed is determined without using the measurement result. The information processing apparatus is configured to, even in the designation mode, change the reference characteristic value set in advance for the type of printing medium indicated by the information input by the input unit based on the measurement result.
US11025783B2

A method for extending new radio (NR) usage indications to an application function (AF) includes, at a policy and charging rules function (PCRF) including at least one processor, receiving an indication of NR usage by a user equipment (UE). The steps further include determining that an AF is subscribed to receive indications of NR usage for the UE. The steps further include, in response to determining that an AF is subscribed to receive indications of NR usage for the UE, communicating the indication of NR usage to the AF. The steps further include receiving a message from the AF to effect a change in service provided to the UE based on the indication of NR usage. The steps further include effecting the change in service provided to the UE based on the indication of NR usage.
US11025782B2

A method, implemented in a distributed system including a plurality of processing devices, generates an end-to-end Call Detail Record (CDR) on voice and multimedia telecommunication sessions over a plurality of telecommunication network elements and interfaces. The method includes the steps of receiving CDRs generated in real-time and streamed by multiple network elements, each CDR referring to a specific interface or protocol, processing the received CDRs as they are received to identify the specific interface or protocol to which the received CDR refers and to identify a single telecommunication session based on a key associated with the received CDR, and creating an end-to-end CDR incrementally based on all of the received CDRs identified for the single telecommunication session, wherein at least two of the received CDRs have a different interface or protocol from one another.
US11025775B2

A method for generating a dialogue tree for an automated self-help system of a contact center from a plurality of recorded interactions between customers and agents of the contact center includes: computing, by a processor, a plurality of feature vectors, each feature vector corresponding to one of the recorded interactions; computing, by the processor, similarities between pairs of the feature vectors; grouping, by the processor, similar feature vectors based on the computed similarities into groups of interactions; rating, by the processor, feature vectors within each group of interactions based on one or more criteria, wherein the criteria include at least one of interaction time, success rate, and customer satisfaction; and outputting, by the processor, a dialogue tree in accordance with the rated feature vectors for configuring the automated self-help system.
US11025762B2

A holder is provided for releasably securing a flat device, such as a tablet computer or a smartphone, to a component, in particular a component of a motor vehicle. The holder comprises a mounting which can be secured to the component and a holder frame which can be releasably secured to the mounting for receiving the device. The mounting comprises a carrier having first connection elements, and the holder frame has second connection elements at two opposite edges. The first and second connection elements are designed in a complementary manner with respect to each other such that the first and second connection elements interlock for the purpose of mutual fixing when the holder frame is inserted into the mounting such that the holder frame cannot be moved out of the mounting in the holder frame plane and/or perpendicularly to the holder frame plane.
US11025759B2

Electronic apparatuses and a camera assembly are provided. An electronic apparatus comprises a housing, a display screen, a camera assembly, and a sensor assembly. The display screen is installed at the housing. A first through hole is defined at the display screen. The camera assembly is disposed correspondingly to the first through hole. A step portion forms on the camera assembly, and the step portion comprises a surface facing towards the display screen. The sensor assembly is mounted on the surface of the step portion.
US11025752B1

A network adaptor (or NIC) is equipped with multi-level protocol processing capability and is implemented with a protocol processing pipeline that has multiple tap points to enable the integration of co-processors to operate with the NIC. The capability leverages the protocol processing pipeline and all the existing NIC software while at the same time enabling the integration of value added co-processors to customize and enhance the NIC capabilities.
US11025750B2

An accessed indicator is encoded in a uniform resource locator (URL) of a first request message, for a first action, to determine if a first request is for a native behavior that provides client-side platform specific actions implemented by the client device that has client-side resources instead of a server in communication with the client device. The first request message represents the first request to access the native behavior. The first action is implemented using a client-side resource of the client device without transmitting the first request from the client device to the server that the first request was originally destined for. A second request message with a second request specifying a second action is intercepted. It is determined that the second action cannot be performed by any of the client-side resources of the client device. The second request specifying the second action is transmitted from the client device to the server. A response is received from the server for the performed second action.
US11025748B2

A mobile system (S1) comprises i) a first operating system (OS1), capable of exchanging data with a CPE (E1), ii) a second operating system (OS2) with a tunnel layer and coupled to devices (D1-D3) having respective IP prefixes and producing data to be accessed from a central application, via a client gateway (CG), iii) a first means (M1) for obtaining a first IP address for the second operating system (OS2) from the CPE (E1) and through the first operating system (OS1), and a second means (M2) for triggering transmission of this first IP address and the device prefixes by the second operating system (OS2) to the client gateway (CG), through the first operating system (OS1) and the CPE (E1), for requesting the establishment of a tunnel between the second operating system (OS1) and the client gateway (CG) to allow the central application to access to data generated by the devices.
US11025742B2

Method, apparatus and computer program product for dynamic link processing engine. For example, the apparatus includes at least one processor and at least one non-transitory memory including program code. The at least one non-transitory memory and the program code are configured to, with the at least one processor, determine link invocation information associated with a link invocation; determining, based on the link invocation information, a link display characterization for the link invocation; and in response to determining that the link display characterization indicates that the expected output associated with the link invocation comprises display-oriented data: determine, based on the link invocation information, a dynamic redirection characterization for the link invocation; and in response to determining that the dynamic redirection characterization indicates that the display-oriented data associated with the link invocation is associated with the target application, perform an inter-application redirection between the invoking application and the target application.
US11025734B2

An information processing method is provided for a first terminal. The method includes displaying, by the first terminal, first information and an interactive prompt corresponding to the first information; and detecting, by the first terminal, an interactive operation formed based on the interactive prompt to generate operation information of the interactive operation. The method also includes sending, by the first terminal, the generated operation information to a server; receiving response information sent by the server; displaying, by the first terminal, an interaction status based on the response information; receiving, by the first terminal, colleting-information for collecting at least one to-be-issued benefit sent by the server; and displaying, by the first terminal, the collecting-information. The collecting-information is sent when the server detects that the interaction status meets a preset interaction-completion condition.
US11025733B2

Systems and methods for building a device graph for cooperative device identification are disclosed. Various information is received at a computing system over a communications network, include information defining a relationship between (i) a unique identifier associated with a first device of a user and (ii) a unique identifier associated with the user, and information defining a relationship between (i) a unique identifier associated with a second device of the user and (ii) the unique identifier associated with the user. The unique identifiers associated with the devices are each mapped to the platform-wide identifier based at least in part on the unique user identifier. A device graph comprising a plurality of device nodes is constructed, with related device nodes connected by one or more edges. Nodes representing the devices are linked based on a relationship identified between them using the platform-wide identifier.
US11025732B2

Methods, apparatus, systems and articles of manufacture are disclosed to manage cloud provider sessions. The examples disclosed herein provide a system to manage cloud provider sessions. The system includes a session manger to establish a session using credentials associated with a cloud provider in response to detecting a request to establish the session with the cloud provider and to record a lifespan of a session token associated with the session. When the lifespan of the session token meets a threshold value, the session manager is to use the credentials to obtain a new session token to refresh the session. The system additionally includes a cloud provider adapter to, in response to detecting an action selection associated with a device, call the cloud provider to execute the action.
US11025728B2

A method, non-transitory computer readable medium and local storage node computing device that establishes a first connection between a first endpoint in a kernel of an operating system and a second endpoint. A proxy application in a user space is invoked and a second connection is established from the operating system kernel to the proxy application. The proxy application is linked to a secure protocol implementation. Handshake messages are proxied between the second endpoint and the proxy application using the first and second connections. Security parameters for the first connection and determined from the handshake messages are sent from the proxy application to the operating system kernel via the second connection. Data is exchanged between the first endpoint in the operating system kernel and the second endpoint using the first connection and the security parameters.
US11025721B2

A detector apparatus for use as part of a data network includes a plurality of x-ray detectors, each of the plurality of x-ray detectors including a network-capable network interface, and a switch or router, connected to each of the network-capable network interfaces of the plurality of x-ray detectors, each of the plurality of x-ray detectors including a distinct IP address such that the data network is adjustable to take a change in a number of the plurality of x-ray detectors into account. The plurality of x-ray detectors are configured to detect x-rays generated from a single x-ray source.
US11025699B2

Described embodiments provide for dynamically optimizing the number of application layer streams that may be multiplexed into a single transport layer connection, providing the advantages of application layer multiplexing without incurring unnecessary congestion-based network delays. A device may monitor net bandwidth and packet loss rates for a connection, and may dynamically increase and decrease a number of concurrent application layer streams to balance throughput and congestion avoidance. As congestion increases, the device may reduce concurrent stream limits in order to spawn additional transport layer connections, allowing faster congestion recovery and reduced performance impairment.
US11025698B2

A method of data conditioning is disclosed that in one aspect can include the steps of receiving a data stream, encoding a time code in the data stream to identify a portion of the data stream corresponding to a content fragment, and separating the identified portion of the data stream to define the content fragment, wherein the content fragment comprises the encoded time code.
US11025693B2

The present invention extends to methods, systems, and computer program products for event detection from signal data removing private information. A signal is ingested. A portion of the signal is selected from within the signal. A first score is computed from the selected portion. The first score indicates a likelihood of the signal including information related to an event type. It is determined that processing of another signal is warranted based on the indicated likelihood. Resources are allocated to process the other signal. The other signal is ingested. Parameters associated with the other signal are accessed. A second score is computed from the parameters utilizing the allocated resources. A previously unidentified event of the event type is identified based on the second score and utilizing the allocated resources. A privacy infrastructure spans signal ingestion, event detection, and event notification and protects the integrity of private information.
US11025690B2

A network device providing audio-video packet delivery over a local area network may include a memory and at least one processor. The at least one processor may be configured to receive data packets from a server, the data packets being addressed to an electronic device downstream from the network device. The at least one processor may be further configured to determine whether the data packets satisfy an offload condition. The at least one processor may be further configured to, when the data packets satisfy the offload condition: transmit, to the server, acknowledgement packets corresponding to the received data packets, store the data packets in a buffer, transmit the data packets to the electronic device, and retransmit the data packets to the electronic device responsive to request therefor, the retransmitted data packets being retrieved from the buffer.
US11025687B2

A computer-implemented method of establishing a conversation between intelligent assistants includes subdividing content of a user's conversation monitored over a predetermined period of time into a plurality of segments, and associating a time stamp with each segment; hashing each of the plurality of segments wherein a hash value is associated with each segment; matching pairs of the hash values and their time stamps with hash values and time stamps received from one or more intelligent assistants associated with the one or more other persons; and establishing a connection between the user's intelligent assistant and an intelligent assistant of at least one of the one or more other persons, when the user's hash value and time stamp for one or more segments of the conversation match hash values and time stamps of one or more conversation segments of the at least one of the one or more other persons.
US11025683B2

The invention relates to a method of initializing a communications session between a plurality of terminals. According to the invention, the initialization method is adapted, as a function of capacity data for at least one terminal, to determine a set of at least one stream transmission channel to be set up between entities of a group of entities comprising said terminals, each channel being for setting up between a first entity and a second entity of the group either directly, or indirectly via at least one third entity of said group, and to transmit at least one entity identifier to at least one first entity of the group in order to set up at least one channel of the set. The invention also relates to a method of accessing a communications session, the method being adapted to receive at least one identifier of at least one entity with which at least one channel is to be set up and to set up at least one channel with at least one entity for which said at least one identifier has been received. The invention also relates to a server (S) and to a terminal (TA) respectively for performing the initialization method and the method of accessing a communications session.
US11025677B2

A symmetric flow response path from an Autonomous System (AS) can be forced by using a same edge gateway for ingress and egress of communications with an Internet source. An asymmetric flow response path from an AS can be used by using different edge gateways for ingress and egress of communications with an Internet source. An anycast IP address can be used for selecting egress edge gateways of an AS. Packets in an AS can be redirected to selected egress edge gateways of the AS.
US11025673B2

Disclosed aspects relate to compliance configuration management for asset migration on a shared pool of configurable computing resources having a set of compute nodes. A migration request to migrate an asset coupled with a first compliance configuration from a source compute node to a target compute node may be detected. The first compliance configuration coupled with the asset on the source compute node may be compared with an expected compliance configuration for the target compute node. Based on and in response to the comparing, a mismatch of the first compliance configuration with respect to the expected compliance configuration may be determined. A set of response actions may be performed with respect to the migration request.
US11025668B2

The threat of malicious parties exposing users' credentials from one system and applying the exposed credentials to a different system to gain unauthorized access is addressed in the present disclosure by systems and methods to preemptively and reactively mitigate the risk of users reusing passwords between systems. A security device passively monitors traffic comprising authorization requests within a network to reactively identify an ongoing attack based on its use of exposed credentials in the authorization request and identifies accounts that are vulnerable to attacks using exposed credentials by actively attempting to log into those accounts with exposed passwords from other networks. The systems and methods reduce the number of false positives associated with attack identification and strengthens the network against potential attacks, thus improving the network's security and reducing the amount of resources needed to securely manage the network.
US11025667B2

Disclosed are a system, method, and computer readable storage medium having instructions for applying a plurality of interconnected filters to protect a computing device from a DDoS attack. The method includes, responsive to detecting the computing device is subject to the DDoS attack, intercepting data from a network node to the computing device, determining data transmission parameters, assigning an initial danger rating to the network node, identifying a subset of the plurality of the interconnected filters which are concurrently triggered, changing the danger rating of the network node based on an application of the subset of the plurality of interconnected filters that are triggered and the data transmission parameters, and responsive to determining that the danger rating of the network node exceeds a threshold value, limiting a transmittal of data from the network node to the computing device by limiting channel capacity between the network node and the computing device.
US11025666B1

The disclosed computer-implemented method for preventing decentralized malware attacks may include (i) receiving, by a computing device, node data from a group of nodes over a network, (ii) training a machine learning model by shuffling the node data to generate a set of outputs utilized for predicting malicious data, (iii) calculating a statistical deviation for each output in the set of outputs from an aggregated output for the set of outputs, and (iv) identifying, based on the statistical deviation, an anomalous output in the set of outputs that is associated with one or more of the malicious nodes, the one or more malicious nodes hosting the malicious data. Various other methods, systems, and computer-readable media are also disclosed.
US11025660B2

Various implementations disclosed herein provide a method for detecting impact of the vulnerability by using a normalizer and correlator. In various implementations, the method includes: accessing a first set of data from a first data sources, calculating a risk level value for each of the first set of data based on a first set of rules, sorting the first set of data based on their risk level, accessing the sorted first set of data by a correlator, accessing, by the correlator, a second set of data from second data sources, correlating each of the sorted first set of data to at least a data of the second set of data based a second set of rules, and calculating a confidence score for each data of the sorted first set of data based on a third set of rules.
US11025656B2

Unknown and reference signatures are accessed. The unknown and reference signatures indicate patterns that correspond to known threats to resources (such as computer systems and/or computer networks) in a computer environment and comprise a multitude of descriptive elements having information describing different aspects of a corresponding signature. A set of similarity measures is created of the unknown and reference signatures from different perspectives, each perspective corresponding to a descriptive element. The set of similarity measures are integrated to generate an overall similarity metric. The overall similarity metric is used to find appropriate categories in the reference signatures into which the unknown signatures should be placed. The unknown signatures are placed into the appropriate categories to create a mapping from the unknown signatures to the reference signatures. The mapping is output for use by an IDPS for determining whether a threat has occurred to the resources in the computer environment.
US11025649B1

The disclosed computer-implemented method for malware classification may include receiving dynamic analysis traces that include event descriptions regarding malware programs, and labels regarding classes of malware programs; performing a first mapping of the event descriptions to a first set of vector representations, wherein order of the events is not taken into account by the first mapping; performing a second mapping of the event descriptions to a second set of vector representations, wherein order of the events is taken into account by the second mapping; combining the first set of vector representations and the second set of vector representations into a combined set of vector representations; inputting the combined set of vector representations, along with the labels, into an autoencoder; and training the autoencoder to generate a feature space representation that correlates identified features with classes of malware. Various other methods, systems, and computer-readable media are also disclosed.
US11025644B2

A content request communication, e.g., generated using a first processor of a device, can be transmitted to a web server. A response communication including content identifying a first value can be received from the web server. The first processor can facilitate presentation of the content on a first display of the device. A communication can be received at a second processor of the device from a remote server. The communication can include data representing a second value and can be generated at the remote server using information received from the web server. Further, the second processor can produce a secure verification output that can be presented on a separate, second display, representing at least the second value. The presentation on first display can at least partially overlap in time with the presentation on the second display.
US11025639B2

A method for providing user access to a network switch appliance, includes: receiving from a user a request to access configuration item for the network switch appliance, the network switch appliance configured to pass packets received from a network to network monitoring instruments; and determining, using a processing unit, whether to allow the user to access the configuration item for the network switch appliance based on information regarding the user.
US11025635B2

A request for access to a user's account is made to an authenticator. The authenticator sends a request for access to the user associated with the user's account. In response to user authorization, the authenticator sends an access link to a service engineer. The service engineer access the link to access the user's account with limited and restricted access. When a remote service session associated with the activated access link is terminated, the authenticator sends a termination of session notice to the user.
US11025623B2

A method for updating drivers. The method may include transmitting a connection request from a first computer to a second computer. The method may include creating a connection handshake in the first computer in response to the transmitted connection request, whereby the connection handshake includes client credentials and driver information. The method may include transmitting the created connection handshake from the first computer to a second computer. The method may include determining the first computer is authorized to connect to the second computer based on the client credentials. The method may include determining a first version level of a first plurality of drivers associated with the first computer is a lower version level than a second version level of a second plurality of drivers associated with the second computer based on the driver information. The method may include transmitting a driver update. The method may include installing the driver update.
US11025622B2

Disclosed herein are systems, methods, and non-transitory computer-readable storage media for associating an application that was pre-installed on a computer with a user account on an online store. A system configured to practice the method presents an application available for download, receives a request to download the application to a computing devices, determines that the application is a pre-installed application, presents an authorization prompt configured to request user authorization to link the application with a user account, receives the user authorization, generates a unique hardware identifier associated with the computing devices, determines that the application is linkable based upon the unique hardware identifier, and links the adoptable application with the user account when the adoptable application is linkable.
US11025621B2

An example method may include detecting, by an operating system component of a computing device, that a client requesting a network connection is operating in a non-persistent mode that prevents tracking of network locations accessed by the client; in response to the detecting, performing privacy enhancing operations before establishing the network connection for the client. The privacy enhancing operations include: broadcasting network messages to discover networks without using previously stored information related to the networks; receiving network identifying information from the networks; providing the network identifying information for the networks to the client; requesting the client to perform media access control (MAC) address randomization; receiving a random MAC address and authentication information for a connection to a network selected from the networks; and authenticating the client; and causing the network connection to be established upon a successful authentication of the client.
US11025619B2

An authentication information request packet of user equipment is received at an authentication server. The authentication information request packet includes a device identity of the user equipment. A virtual account identity corresponding to the device identity is obtained. The authentication information response packet is signed using a server private key. An authentication request packet of the user equipment is received. The authentication request packet includes the device identifier, the virtual account identity, and a biometric feature token. A registered service public key and a registered biometric feature token corresponding to the device identifier, the virtual account identity, and a biometric authentication type are obtained. A signature verification is performed by the authentication server on the authentication request packet using the registered service public key. An identity authentication is performed based on the biometric feature token in the authentication request packet and the registered biometric feature token.
US11025611B2

A method of a responding entity for creating a secure link with a requesting entity in an embedded universal integrated circuit card (eUICC) environment is provided. The method includes: receiving, from the requesting entity, a secure link creation message including signature information of the requesting entity; verifying the signature information of the requesting entity by using trust information of the requesting entity, the trust information of the requesting entity being generated by a certificate authority (CA) and transferred to the responding entity; generating a shared key used for communication between the responding entity and the requesting entity; and creating the secure link with the requesting entity by using the shared key.
US11025607B2

Concepts and technologies disclosed herein are directed to vehicle-to-everything (“V2X”) certificate management. According to one aspect of the concepts and technologies disclosed herein, a system can receive a CRL from a security credential management (“SCM”) system. The CRL can identify one or more certificates that have been determined to be invalid, such as when the certificate(s) has expired. The certificate(s) can be utilized by a vehicle for secure communications, including vehicle-to-vehicle (“V2V”) and vehicle-to-infrastructure (“V2I”) (collectively V2X). The system can format the CRL as a cell broadcast message. The system can then create a cell broadcast request directed to a cell broadcast center (“CBC”). The cell broadcast request can include the CRL formatted as the cell broadcast message. The system can send the cell broadcast request to the CBC to instruct the CBC to broadcast the CRL as the cell broadcast message.
US11025603B2

When providing a service to a communication terminal, a service providing system causes an authentication system to perform authentication of a user of the communication terminal. The service providing system includes a processor configured to receive, from the communication terminal, terminal identification information to identify the communication terminal, the terminal identification information including a to-be-authenticated section to be used for the authentication of the user and a not-to-be-authenticated section not to be used for the authentication of the user; and transmit, to the authentication system, only the to-be-authenticated section out of the received terminal identification information.
US11025589B1

A networked electronic device produces a data object comprising content and assigns a location-independent application-level name to the data object. The location-independent application-level name is independent of any network location at which the content is available. The networked electronic device maps the location-independent application-level name to an IP address, generates a DNS resource record specifying the mapping of the location-independent application-level name to the IP address, and provides the DNS resource record to a DNS network node.
US11025587B2

A dynamic ownership model is utilized for Internet protocol (IP) address allocation and management. Dynamic ownership is determined on a first-come, first-serve basis. According to an embodiment, IP address ownership can be coordinated through a lock coordinator on a per-node basis via a communication channel that is independent of the IP network being assigned. A per-node IP manager can request for a lock for a specific IP address, and if granted, the per-node IP manager can create an IP resource object, apply the IP resource object data to an interface on the node, set up the interface to receive traffic, and continuously issue checks to ensure that the node is allowed to own this IP resource object. Since each node participates in IP address ownership based on its own network status, overheads associated with synchronizing node state to a central IP address coordinator can be significantly reduced.
US11025580B2

A system and method for enabling delivering to a receiver of a message addressed to a non-electronically addressable entity ID associated with the receiver employs a database storing a plurality of verified electronically addressable and non-electronically entity IDs associated with the receiver, and a controller that upon receiving a message addressed to non-electronically addressable entity ID identifies the receiver and enables the receiver access to the message.
US11025579B2

A message spacing system evenly distributes the communication of one or more notifications to a computing device communicatively coupled with an online service. The message spacing system also instructs an application residing on the computing device to display a badge notification. The badge notification indicates a number of pending notifications awaiting review by a member of the online service. The badge notification may be overlaid an icon corresponding to an application that the member uses to access or interact with the online service. The badge notification may also be overlaid on an icon displayed on a webpage, where the icon represents a selectable topic that the member may select to interact with the online service. The notifications that the messaging spacing system may send include offline notifications and online notifications.
US11025574B2

Provided herein are CRISPR/Cas methods and compositions for targeting RNA molecules, which can be used to detect, edit, or modify a target RNA.
US11025570B2

Techniques for providing dynamic and secure real-time notifications in messages are disclosed herein. In some embodiments, a method comprises: storing a count of notifications associated with a user; transmitting a message to a messaging client of a device of the user, the message being configured to trigger the messaging client to transmit a request in response to the message being opened; updating the count of notifications after the transmission of the message; receiving the request from the messaging client based on the message having been opened; in response to receiving the request, determining the changed count of notifications; retrieving an image from a database of images based on the changed count of notifications, the image indicating the changed count of notifications; and transmitting the image to the messaging client for display in the opened message.
US11025565B2

At an electronic device with a display screen, display a message transcript, where the message transcript includes an incoming message. Determine, based at least in-part on the message, a plurality of suggested one or more characters. Determine if the user of the device has, in the past, frequently inputted a response different from the plurality suggested one or more characters when the plurality were presented for user selection. Optionally, determine if the frequently inputted response is synonymous with a suggested one or more characters. Display the frequently-inputted response, in place of at least one of the plurality of suggested one or more characters, under some circumstances based on these determination(s).
US11025564B2

Techniques are disclosed for implementing direct memory access in a virtualized computing environment. A new mapping of interfaces between RNIC Consumer and RDMA Transport is defined, which enables efficient retry, a zombie detection mechanism, and identification and handling of invalid requests without bringing down the RDMA connection. Techniques are disclosed for out of order placement and delivery of ULP Requests without constraining the RNIC Consumer to the ordered networking behavior, if it is not required for the ULP (e.g., storage). This allows efficient deployment of an RDMA accelerated storage workload in a lossy network configuration, and reduction in latency jitter.
US11025561B2

Embodiments include a resource allocation system for managing execution of a computing task by a hierarchically-arranged computing infrastructure. In embodiments, the resource allocation system can comprise a resource map, an index processor, and an allocation manager. The resource map can include data elements that are associated with each service provider, including parent-child relationships. Workloads can be assigned to providers based on one or more optimization indexes calculated for each service provider based on a plurality of level-specific performance metrics received from one or more monitoring engines.
US11025548B2

Provided is a collision prevention system of a multi-master including: a plurality of external modules; and an integrated device. The integrated device includes: a plurality of interfaces connected respectively to the plurality of external modules and respectively controlled by corresponding external modules; a plurality of internal modules; a plurality of dedicated buffers connected respectively to the plurality of interfaces and the plurality of internal modules; and a common block connected to the plurality of dedicated buffers and controlled by the plurality of interfaces and the plurality of internal modules. The plurality of dedicated buffers includes a GBU and a plurality of LBUs. The GBU and the plurality of LBUs are connected to two neighboring GBUs and a plurality of LBUs to form a ring communication topology, which transmits ring communication data in one direction. The common block is connected to the ring communication topology through the GBU.
US11025544B2

A network interface controller can be programmed to direct write received data to a memory buffer via either a host-to-device fabric or an accelerator fabric. For packets received that are to be written to a memory buffer associated with an accelerator device, the network interface controller can determine an address translation of a destination memory address of the received packet and determine whether to use a secondary head. If a translated address is available and a secondary head is to be used, a direct memory access (DMA) engine is used to copy a portion of the received packet via the accelerator fabric to a destination memory buffer associated with the address translation. Accordingly, copying a portion of the received packet through the host-to-device fabric and to a destination memory can be avoided and utilization of the host-to-device fabric can be reduced for accelerator bound traffic.
US11025536B1

A first leaf switch may receive from a first host, a request for a second host that is not known at the first leaf switch. The first host may be within a first End Point Group (EPG) and the second host being within a second EPG. The first EPG and the second EPG may be in a Bridge Domain (BD). Flood in encapsulation may be enabled for the first EPG and for the second EPG. Next, the first leaf switch may flood the request locally in the first EPG and to a spine switch with a VNID of the first EPG. The spine switch may then flood the request to a second leaf switch where the BD is present. The second leaf switch may send a glean request for the second host, receive, in response to sending the glean request, a reply, and learn the second host locally in response to receiving the reply.
US11025525B1

In one embodiment, an apparatus can include a switch fabric. The apparatus can also include a first edge device operatively coupled to an edge of the switch fabric and having a plurality of ports. The apparatus can also include a second edge device operatively coupled to the edge of the switch fabric and having a plurality of ports, the switch fabric defining a plurality of single-hop paths between the first edge device and the second edge device. The first edge device configured to send to a peripheral processing device operatively coupled to the first edge device a representation of a mapping of a portion of the plurality of ports of the first edge device and a portion of the plurality of ports of the second edge device to a plurality of ports included in a non-edge device represented within a virtual multi-hop network topology.
US11025521B1

A system and method for determining a dynamic sample of client devices in a distributed system environment are provided. Coordinates for areas based on geospatial input are received. A predicate function that selects a dynamic sample of client devices in the one or more areas based on the received coordinates is determined. The client devices are selected based on the predicate function. A request for information is queried from the selected client devices and is processed.
US11025515B2

Devices and methods of providing performance measurements (PMs) for Network Function Virtualization are generally described. A Virtual Network Function (VNF) PM job is scheduled at a VNF and VNF PM data received in response. From the VNF PM data, it is determined that virtualized resource (VR) management may be a cause of poor VNF performance. A VR PM job is scheduled and results in VR PM data. The VR PM and VNF PM data are analyzed to determine whether to increase the VR at the VNF. If an increase is determined, a request for the increase is transmitted from an element manager to a VNF manager or the VNF PM and/or VR PM data are provided to a Network Manager (NM) for the NM to request the increase by a Network Function Virtualization Orchestrator (NFVO).
US11025514B2

A method of collecting health check metrics for a network is provided. The method, at a deep packet inspector on a physical host in a datacenter, receives a copy of a network packet from a load balancer. The packet includes a plurality of layers. Each layer corresponds to a communication protocol in a plurality of communication protocols. The method identifies an application referenced in the packet. The method analyzes the information in one or more layers of the packet to determine metrics for the source application. The method sends the determined metrics to the load balancer.
US11025513B2

Systems, methods, and computer-readable media for providing a Policy Enforcement as a Service (PEaaS) are described. A processor may, in response to identification of a suspension of user(s) for one of one or more services, generate a suspension value indicative of the suspension and transmit the suspension value to a corresponding one of third party platforms of the service(s), respectively. The suspension value usable by the corresponding third party platform to determine whether to deny request(s) from the user for the distributed service, or not. A service of the service(s) comprises a distributed service provided by a plurality of hosts. In response to the service corresponding to the suspension including the distributed service, the suspension value may be transmitted to the first host, and the suspension value may be propagated to the one or more second hosts, respectively. Other embodiments may be described and/or claimed.
US11025509B2

An example playback device includes programming to perform functions including detecting a triggering event that causes the playback device to transmit a first message indicating the playback device is available for setup and establishing an initial communication path with a computing device. The functions also include processing a second message received from the computing device via the initial communication path containing network configuration parameters for a secure WLAN defined by one or more network devices, wherein the initial communication path with the computing device does not traverse any of the one or more network devices, and wherein the network configuration parameters include an identifier of, and security information for, the secure WLAN. The functions also include using the network configuration parameters to connect to the secure WLAN and transitioning from communicating with the computing device via the initial communication path to communicating with the computing device via the secure WLAN.
US11025504B2

The described technology is generally directed towards an intent design tool for communication networks. A graphical user interface provided by the intent design tool can include a collection of communication network topology elements and a communication network intent topology design area. Selected communication network topology elements can be placed into the communication network intent topology design area, and connection types between the selected communication network topology elements can also be specified in the communication network intent topology design area, in order to define custom communication network intent topologies.
US11025495B1

Example methods and apparatus to determine container priorities in virtualized computing environments are disclosed herein. Examples include: a cluster controller to classify a first container into a cluster based on the first container having a number of distinct allocated resources within a threshold number of distinct allocated resources corresponding to a second container; a container ranking generator to: determine resource utilization rank values for a resource usage type of a number of distinct allocated resources, the resource utilization rank values indicative that the first container utilizes the resource usage type more than the second container; determine an aggregated resource utilization rank value for the first container based on aggregating ones of the resource utilization rank values corresponding to the first container; and a container priority controller to generate a priority class for the first container based on the aggregated resource utilization rank value.
US11025491B2

Systems and methods are described for testing server configuration across a secured network edge. A server administrator submitting configuration instructions from an external network separated from an internal network by a network boundary device may not have adequate access for proper testing. A test platform within the internal network receives, from a management device in the external network, a test request indicating a client characteristic. The test platform generates a data request with origination information for a source of the data request conforming to the indicated client characteristic and transmits the generated data request to a data server within the internal network responsive to receiving the test request from the management device. The test platform then receives a response to the generated data request and provides, to the management device in the external network, a report based on the received response.
US11025484B2

An ad-hoc wireless network is implemented by a plurality of wireless access points to detect and report failure of a concurrently implemented conventional network. The wireless access points collect and store network status information of the conventional network and send the network status information to a centralized emergency manager when failure of the conventional network is detected. The ad-hoc wireless network may also provide backhaul connectivity to a wireless access point of the failed conventional network for emergency communication.
US11025482B2

In one embodiment, a resolution resiliency application modifies domain name service (DNS) resolution. In operation, the resolution resiliency application determines that an authoritative name server has begun recovering from a degraded state or receives a flush list update from the authoritative name server. In response, the resolution resiliency application performs operation(s) that modify a query rate and/or a cache. The query rate specifies a frequency associated with DNS queries transmitted to the first authoritative name server. The cache stores DNS record(s) received from the first authoritative name server. Finally, the resolution resiliency application generates a DNS response to a DNS query based on the modified query rate and/or the modified cache.
US11025477B2

This disclosure relates to enhanced overlay network-based transport of traffic to and from customer branch office locations, facilitated through the use of the Internet-based overlay routing. A method of selecting an ingress edge region of the overlay network begins by mapping a service hostname to an IKEv2 destination of an outer IPsec tunnel associated with a first overlay network edge. An IKEv2 session is established from the first overlay network edge to the customer router. Upon tunnel establishment, a secondary lookup is performed to determine whether the first overlay network edge is an appropriate ingress region. Based on a response to the secondary lookup, a IKEv2 redirect is issued to a second overlay network edge. A new tunnel is then established from the second overlay network edge to the customer router. Thereafter, an additional lookup may also be performed to determine whether the second overlay network edge remains an appropriate ingress region.
US11025474B2

A periodic phase modulation, having a period shorter than a symbol period, is applied as a source modulation, in addition to a symbol modulation, to signals transmitted between a transmitter and a receiver in a communication network. Symbol value elements can be sent from multiple transmitters (203, 303, 603, 703) to a receiver (607, 207) in the same symbol period can be processed on the basis of the source modulation without destructive interference. In some embodiments, the symbol value elements sent by different transmitters can be combined in the receiver. In some embodiments, symbol value elements sent by different transmitters can be distinguished in the receiver.
US11025473B2

The present disclosure describes a method, an apparatus, and a computer-readable medium for use in providing reverse time alignment in a wireless network. For example, the method may include obtaining a first timing value from a serving node and a second timing value from each of one or more non-serving nodes of the UE, computing one or more timing differences between the first timing value and each of one or more second timing values, and reporting the one or more timing differences to the serving node. Additionally, the disclosure describes a method, an apparatus and a computer-readable medium for use in providing time alignment in a coordinated multi-point (CoMP) transmission network by obtaining of a CoMP transmission network timing information from a plurality of user equipments (UEs) and storing the timing information for each of the plurality of UEs for communicating with the first node.
US11025469B2

Various embodiments relate to a demodulator configured to receive a legacy signal and a secured signal using orthogonal frequency division multiplexing (OFDM) modulation, including: an analog to digital converter (ADC) configured to receive an OFDM modulated signal; an fast Fourier transform (FFT) unit configured to receive the output of the ADC; a frequency de-mapper configured to map the output of the FFT to legacy frame samples and secured signal samples including a secured hash; a sample to bit converter, a channel de-interleaver, and a channel decoder configured to process the legacy samples to produce a legacy frame; frame checking logic configured to check the validity of the legacy frame and produce a frame validity signal; a de-channelization module configured to convert the sample rate of secured signal samples; a channel decoder configured to decode the converted secured signal bits; a frame selector configured to select specific portions of the input legacy frame to produce a secured frame; a hash module configured to hash and encrypt the secured frame; a hash comparator configured to compare the received secured hash to the hashed and encrypted secured frame configured to produce a hash compare signal; and attack detection logic configured to determine when a received OFDM signal has been attacked based upon the hash compare signal.
US11025467B2

A data sending apparatus includes a processor and a transceiver. The processor is configured to generate K first frequency-domain data streams, wherein a kth first frequency-domain data stream of the K first frequency-domain data streams is determined by performing preprocessing on a kth first modulated data stream, and the preprocessing includes at least a Fourier transform, a cyclic extension, or a phase rotation. The processor is further configured to map the K first frequency-domain data streams to frequency-domain resources to generate a time-domain symbol, and the transceiver is configured to send the time-domain symbol. A length of the kth first frequency-domain data stream of the K first frequency-domain data streams is Nk, and a length of the kth first modulated data stream is Mk. K is a positive integer greater than 1, Nk and Mk are positive integers, and k is an integer k=0, 1, . . . , K−1.
US11025460B2

In accordance with one or more embodiments, a cabling system can include a plurality of cables, and a tapered supporting structure coupled to the plurality of cables. The tapered supporting structure can facilitate exposure of an endpoint of each cable of the plurality of cables, and the endpoint of each cable of the plurality of cables can be coupled to a communication device that facilitates transmitting electromagnetic waves that propagate along the plurality of cables without requiring an electrical return path. Other embodiments are disclosed.
US11025459B2

Systems and methods for automatic level control (ALC) are provided. In one embodiment, an ALC system for communications signals comprises: a multi-threshold programmable ALC controller; and at least one signal path that includes: a digital step attenuator configured to receive an analog communications signal and attenuate the analog communications signal in response to an attenuation adjustment signal from the ALC controller; and an analog-to-digital converter configured to receive the analog communications signal as attenuated by the digital step attenuator and generate samples of the attenuated analog communications signal, wherein the ALC controller receives the samples. The ALC controller comprises a plurality of clip detectors that function in parallel. Each of the clip detectors are programmed with a respective amplitude and time threshold. Based on which of the plurality of clip detectors determine that the samples exceed their respective amplitude and time threshold, the ALC controller generates the attenuation adjustment signal.
US11025452B2

The invention relates to an edge server (140a) for being arranged at the edge between a first local area network (110a) and a wide area network (180), wherein the edge server (140a) comprises: a communicator (141a) configured to allow communication between the devices (111a, 113a) connected to the first local area network (110a) and devices (111b) connected to the wide area network (180), wherein the communicator (141a) is further configured to store and process data provided by the first local area network (110a) using big data algorithms locally; and an interlinker (143a) configured to allow communication between the devices (111a, 113a) connected to the first local area network (110a) and devices (111b) connected to a second local area network (110b) supported by another edge server (140b), wherein the other edge server (140b) is arranged at the edge between the second local area network (110b) and the wide area network (180).
US11025445B2

This disclosure describes techniques for providing early acknowledgments to a source device performing a data write operation within a data center or across a geographically-distributed data center. In one example, this disclosure describes a method that includes receiving, by a gateway device and from a source device within a local data center, data to be stored at a remote destination device that is located within a remote data center; storing, by the gateway device, the data to high-speed memory included within the gateway device; transmitting, by the gateway device, the data over a connection to the remote data center; after transmitting the data and before the data is stored at the remote destination device, outputting, by the gateway device to the source device, a local acknowledgment, wherein the local acknowledgment indicates to the source device that the data can be assumed to have been stored at the remote destination device.
US11025443B2

An Ethernet power sourcing equipment (PSE), and a method and an apparatus for power over Ethernet (PoE), where the Ethernet PSE includes a PSE chip, a master control processor, a power supplying port, and a preprocessor. The preprocessor is configured to determine whether the master control processor starts upon power-on, control the PSE chip to detect whether the power supplying port is connected to a valid powered device (PD) when the master control processor starts upon power-on, and control, according to a preset rule, the PSE chip to power on the valid PD when the power supplying port is connected to the valid PD. Hence, the Ethernet PSE has abundant management functions and can quickly power on a PD.
US11025442B2

A method for a network apparatus to control power provision to a powered device is proposed. The network apparatus is configured for connection to the powered device, an electronic device, and a power supply device. The network apparatus permits transmission of electronic power provided by the power supply device to the powered device therethrough when the electronic device is communicatively connected to the network apparatus, and does not permit transmission of electronic power provided by the power supply device to the powered device therethrough when the electronic device is not communicatively connected to the network apparatus.
US11025440B2

Determining whether to allow access to a message is disclosed. A message is received from a sender. The message is associated with a first time-to-live (TTL) value. A determination is made that the first time-to-live value has not been exceeded. The determination is made at least in part by obtaining an external master clock time. In response to the determination, access is allowed to the message.
US11025437B2

A method for post-manufacture certificate generation for an electronic device 4 comprises obtaining a public key from the electronic device 4, and enrolling the device in to a chain of trust provided by a public key infrastructure in which a child certificate is attested as valid by an attestor associated with a parent certificate in the chain. The enrolling comprises generating an electronic device certificate 30-I for the chain of trust using the public key 32 obtained from the electronic device. The enrolling is performed at an enrolment device 6 separate from the electronic device 4. The electronic device certificate 30-I is a descendant certificate of the enrolment device certificate 30-D associated with the enrolment device 6.
US11025426B2

The disclosure concerns an encryption function applied to a first word, a second word, a third word, and a fourth word including: multiplying the third word by the fourth word; adding the result of the multiplication; subtracting the result of the addition to the second word from the result of the addition to the first word; adding the result of the subtraction; combining with a constant the result of the addition of the third word to the result of the subtraction; and multiplying by two the result of said combination and circularly shifting the codes of the respective results of the addition of the fourth word to the result of the subtraction, of the addition of the second word to the result of the multiplication, and of the addition of the first word to the result of the multiplication.
US11025423B2

In an example system for private key recovery performed by a processor of a key recovery computing system, a key recovery computing system is configured to provide an original private key. The original private key is associated with a storage location of a blockchain-based asset. The key recovery computing system is configured to receive supplemental recovery information provided by a user via a user computing device. A recovery seed is derived from at least a subset of the supplemental recovery information, wherein the recovery seed is non-invertible. The original private key and the recovery seed are stored relationally to the supplemental recovery information. In some embodiments, the processor is further configured to cryptographically protect at least one of the original private key and the recovery seed via a universal second-factor authentication (U2F) device.
US11025422B2

A cloud-native global file system in which a local filer creates objects and forward them to a cloud-based object store is augmented to include constant-time rekeying (CTR). At volume creation time on the filer, a random Intermediate Key (IK) is generated. The IK is encrypted using one or more public key(s) for the volume in question, and then stored in encrypted form in a volume metadata file (e.g., cloudvolume.xml) alongside the other volume information. Once created, the IK is treated like any other volume metadata. During startup of a volume manager on the filer, the one or more per-volume IK blobs (present) are decrypted using an appropriate secret key, and then cached in memory. All objects sent to the cloud are then symmetrically encrypted to the current IK for that volume. All objects read from the cloud are decrypted using the locally-cached IK.
US11025420B2

Secure operations can be performed using security module instances offered as a web service through a resource provider environment. State data and cryptographic material can be loaded and unloaded from the instance as needed, such that the instance can be reused for operations of different customers. The material and data can be stored as a bundle encrypted using a key specific to the hardware security module and a key specific to the resource provider, such that the bundle can only be decrypted in an instance of that type of security module from the associated manufacturer and operated by that particular resource provider. The customer is then only responsible for the allocation of that instance during the respective cryptographic operation(s).
US11025417B2

The present disclosure provides a cross-blockchain data access method, apparatus and system, and a computer readable medium. The method comprises: sending an authorizing blockchain apparatus a block data request carrying a requesting blockchain apparatus identifier and authorization information, so that the authorizing blockchain apparatus verifies whether the authorization information corresponding to locally-stored requesting blockchain apparatus identifier is matched with the authorization information in the block data request; receiving block data sent by the authorizing blockchain apparatus and corresponding to the block data request, the block data being sent after the authorizing blockchain apparatus verifies that the authorization information corresponding to locally-stored requesting blockchain apparatus identifier is matched with the authorization information in the block data request. According to the present disclosure, through an authorization mechanism, namely, the authorizing blockchain apparatus's authorization for the requesting blockchain apparatus, the requesting blockchain apparatus may be enabled to access the block data of the authorizing blockchain apparatus according to the authorization information, thereby finally achieving cross-blockchain data access. The cross-blockchain data access according to the present disclosure does not require manual participation and exhibits a higher access efficiency.
US11025410B2

Disclosed herein are methods, systems, and apparatus, including computer programs encoded on computer storage media, for storing blockchain data. One method includes receiving a request from an application component of a blockchain node to execute one or more software instructions in a trusted execution environment (TEE); determining one or more blockchain node blocks for executing the one or more software instructions; performing error correction coding of the one or more blocks in the TEE to generate one or more encoded blocks; dividing each of the one or more encoded blocks into a plurality of datasets; selecting one or more datasets from each of the one or more encoded blocks; and hashing the one or more datasets to generate one or more hash values corresponding to the one or more datasets for use in replacing the one or more datasets to save storage space of the blockchain node.
US11025409B1

Systems and methods are described for generating a blockchain-based user profile. In various aspects, one or more blockchain IDs associated with a user is received, where each blockchain ID is associated with a corresponding blockchain. One or more blockchain transactions are identified that are associated with the one or more blockchain IDs, where a trust profile for the user can be generated based on the one or more blockchain transactions. The trust profile can include user information determined from the one or more blockchain transactions.
US11025408B2

A method for registering and provisioning an electronic device is provided. The method includes a step of inserting a first keypair into a secure element of the electronic device. The first keypair includes a public key and a private key. The method further includes a step of requesting, from a server configured to register and provision connected devices, a provisioning of credentials of the electronic device. The method further includes a step of verifying, by the server, the electronic device credentials. The method further includes a step of registering, by the server, the electronic device. The method further includes a step of transmitting, from the server to the electronic device, a device certificate. The method further includes steps of installing the transmitted device certificate within the secure element of the electronic device, and provisioning the electronic device according to the installed device certificate.
US11025405B2

The present invention relates to a multi-channel IM-DD optical transceiver comprising at least one transmitter and a receiver, and a method for equalizing input samples at an adjusted sampling phase using a quality parameter linearly proportional to a BER. The data transmission and reception use a single master channel and slave channels, which have a baud rate equal to or lower than the baud rate of the master channel. A reliable and identical clocking of all the channels is obtained through either the receiver clock of the master channel when they are received from a single transmitter or a reference clock whose frequency is higher than the highest clock frequency amongst all the channels when they are received from a combination of transmitters. An enhanced timing recovery circuit is also provided to select optimized finite impulse response filters, calculate filter coefficients and generate the receiver clock of the master channel.
US11025392B2

A reference signal sending/receiving method, a terminal device, and a network device are provided. The terminal device determines transmit power of a reference signal of the terminal device, where the transmit power is related to a quantity of unavailable time-frequency resources in a transmission unit in which the reference signal is located; and transmits the reference signal based on the transmit power. After receiving the reference signal from the terminal device, the network device parses the reference signal based on the transmit power. The terminal device relates the transmit power of the reference signal of the terminal device to the quantity of unavailable time-frequency resources in the transmission unit in which the reference signal is located, thereby improving the transmit power of the reference signal of the terminal device in uplink MU-MIMO, and improving communication performance of the terminal device with a low signal-to-noise ratio.
US11025391B2

Provided is a reference signal transmission method and device. The method includes that a base station transmits indication information to a UE through a downlink control signaling or a higher layer signaling, where the indication information includes one of: information indicating that the UE transmits a reference signal, information indicating whether the reference signal is contained in a physical downlink shared channel or a physical downlink control channel, or information indicating a transmission mode of a downlink reference signal or an uplink reference signal; or the base station pre-defines with the UE a time-frequency resource or a parameter set required by the UE or the base station to transmit the reference signal, where the time-frequency resource or the parameter set includes at least one of: a time domain symbol position, a frequency domain position, a transmission period and a subframe offset, a type of a reference signal sequence or an orthogonal mask. This solves the problem in the existing art of how to properly place a reference signal on time-frequency resources and trigger a signaling correspondingly.
US11025390B2

A method for transmitting uplink Sounding Reference Signal, SRS, a terminal, a network side device and a storage medium are provided. The method includes determining a transmission manner for one or more uplink SRSs in a wideband system by a terminal according to a configuration from a network side device, wherein the wideband system is configured with a plurality of basic parameters; transmitting the one or more uplink SRSs to the network side device in the wideband system by the terminal according to the transmission manner.
US11025386B2

The present disclosure relates to signaling information in physical broadcast channel (PBCH) demodulation reference signals (DMRS). In one example, a network entity may transmit the signaling information carried by a DMRS in one or more resource elements of physical broadcast channel (PBCH) symbols within a bandwidth of a primary synchronization signal and a secondary synchronization signal of a synchronization signal block. In another example, a user equipment (UE) may receive the signaling information carried by the DMRS within one or more resource elements of PBCH symbols within a bandwidth of a primary synchronization signal and a secondary synchronization signal of a synchronization signal block on a broadcast channel from the network entity.
US11025381B2

A receiver for detecting and recovering payload data from a received signal comprises a radio frequency demodulation circuit, a detector circuit and a demodulator circuit. The radio frequency demodulation circuit detects the received signal. The received signal carries the payload data as OFDM symbols in one or more of a plurality of time divided frames, each frame including a bootstrap signal, a preamble signal and a plurality of sub-frames. The demodulator circuit detects bootstrap OFDM symbols to identify communications parameters for detecting the fixed length signalling data, detects the fixed length signalling data to identify the communications parameters for detecting the variable length signalling data, detects the variable length signalling data, and uses the fixed and variable length signalling data to detect the payload data.
US11025375B2

Mitigating the risk of sensor data loss can include establishing, with a computing node, a first communication channel with a first proximate device and a second communication channel with a second proximate device. The first proximate device can be operatively coupled to a sensor and can generate data in response to signals received from the sensor. The computing node can receive the data generated by the first proximate device. The data can be received from the second proximate device via the second communication channel in response to detecting a failure to receive a complete uncorrupted transmission of the data from the first proximate device via the first communication channel and determining that the second proximate device is capable of receiving and retransmitting the data to the computing node.
US11025371B2

A method, an apparatus, and a computer-readable medium for wireless communication are provided. In one configuration, the apparatus may be a UE. The UE receives PTM data from a base station. The UE attempts to decode the PTM data based on an identifier. The UE determines whether to transmit feedback information to the base station based on the attempt to decode the PTM data. In another configuration, the apparatus may be a base station. The base station transmits PTM data to a UE. The base station retransmits the PTM data to the UE based on feedback information associated with the transmitted PTM data.
US11025368B2

A preamble of a physical layer (PHY) data unit that conforms to a first communication protocol is generated. The preamble includes a legacy field that is formatted according to a second communication protocol, and a signal field having a first orthogonal frequency division multiplexing (OFDM) symbol and a second OFDM symbol. The first OFDM symbol (i) immediately follows the legacy field and (ii) is modulated using binary phase shift keying (BPSK) modulation, whereas a third communication protocol specifies that an OFDM symbol, defined by the third communication protocol, that immediately follows the legacy field is modulated using BPSK modulation rotated by 90 degrees (Q-BPSK). The second OFDM symbol (i) immediately follows the first OFDM symbol and (ii) is modulated using Q-BPSK to indicate to a receiver device that conforms to the first communication protocol that the data unit conforms to the first communication protocol.
US11025363B2

An encoder outputs a first bit sequence having N bits. A mapper generates a first complex signal s1 and a second complex signal s2 with use of bit sequence having X+Y bits included in an input second bit sequence, where X indicates the number of bits used to generate the first complex signal s1, and Y indicates the number of bits used to generate the second complex signal s2. A bit length adjuster is provided after the encoder, and performs bit length adjustment on the first bit sequence such that the second bit sequence has a bit length that is a multiple of X+Y, and outputs the first bit sequence after the bit length adjustment as the second bit sequence. As a result, a problem between a codeword length of a block code and the number of bits necessary to perform mapping by a set of modulation schemes is solved.
US11025355B2

Disclosed is an interactive device for an internet radio station including a content presentation unit and a content selection unit. The content selection unit includes an operation module, a processing module, an indication module and a communication module. The operation module is used by a user to input a channel selection command by means of manual rotation and to generate a corresponding electrical signal. The processing module is used for acquiring corresponding audio resources from the network radio according to the electrical signal and issuing the corresponding audio resources to the content presentation unit which is used for playing back the audio resource. The processing module is further used for driving the indication module to generate a state change corresponding to the electrical signal. Hence, the user may select audio resources by rotating the operation module, so that the channel selection is similar to a traditional rotary tuning method.
US11025353B2

A broadcast receiving system is disclosed that verifies a current digital certificate extracted from a digital broadcast signal using a previous digital certificate previously stored as trusted. The current and previous digital certificates are associated with digital signatures with which data received with the broadcast signal has been signed. Also disclosed is a system for signing application data to be broadcast together with a digital certificate in a digital broadcast signal. A current digital certificate attesting the validity of a digital signature attached to broadcast data is in turn signed with a digital signature using one or more previous private keys associated with respective previous certificates identifying the issuer of the current digital certificate. These disclosures are in particular applicable to HbbTV.
US11025351B2

Example methods disclosed herein to resolve media source detection ambiguities include detecting an ambiguity condition associated with media source detection when monitoring media presented by a media output device in communication with at least two media source devices, and in response to detecting the ambiguity condition, determining a source of the media output from the media output device using motion data reported by accelerometers affixed to remote control devices associated with the at least two media source devices. Example methods disclosed herein to resolve simulcast crediting ambiguities include detecting an ambiguity condition associated with simulcast broadcasting when monitoring media presented by a media output device, and in response to detecting the ambiguity condition, adjusting a time associated with a channel change using motion data reported by an accelerometer affixed to a remote control device associated with the media output device.
US11025340B2

A dark fiber dense wavelength division multiplexing service path design microservice (ddSPDmS) can provide a scalable self-contained meta-data driven approach for a flexible implementation of a dark fiber dense wavelength division multiplexing (DWDM) service path design solution. The service plan design solution can be used as a standalone solution or integrated with a network management application. In order to manage a large volume of circuit designs, multiple microservices can accept application program interface (API) requests in a cloud environment. Permission can then be given to any application to use the API to make a call to the design and inventory. Additionally, metadata templates can be designed to support a node, a link, and/or a topology for the microservices.
US11025334B2

Disclosed according to various embodiments of the present invention are a method and a device for preforming device-to-device (D2D) relay communication. Disclosed are a method and a device for performing device-to-device (D2D) relay communication, the method comprising the steps of: receiving, from second UE, a signal including relay request information; transmitting a response signal to the second UE if destination UE corresponding to destination UE ID included in the relay request information has been found; and transmitting a relay signal to the destination UE.
US11025323B2

The invention provides a communication system and components thereof for controlling coordinated transmissions using a plurality of carriers operated by a plurality of transmission points. A transmission point configures a number of signal quality and interference measurements for a mobile telephone communicating over the plurality of carriers, each measurement being associated with multiple carriers and multiple measurement configurations. The mobile telephone performs the configured measurements with respect to each of the multiple carriers and reports the results of the relevant measurements to the transmission point.
US11025300B2

Aspects of the subject disclosure may include, for example, a transmission medium having a core. A conductive layer forms an uninsulated outer surface of the transmission medium. The conductive layer is configured to impede accumulation of water to support propagation of first electromagnetic waves guided by the uninsulated outer surface. Other embodiments are disclosed.
US11025295B2

There is described a method of determining an MRC coefficient vector for a RAKE receiver. The method comprises (a) estimating a channel impulse response vector, (b) estimating a noise variance vector, (c) calculating a multiplication factor vector based on the estimated channel impulse response vector and the estimated noise variance vector, (d) calculating a modified channel impulse response vector by multiplying each element in the estimated channel response vector with a corresponding element in the multiplication factor vector, and (e) calculating the MRC coefficient vector as the complex conjugate of the modified channel impulse response vector. There is also described a corresponding device, an UWB receiver, a computer program and a computer program product.
US11025286B2

An OFDMA subframe carrying different data fields in different time segments may include a separate short training field (STF), and a separate set of long training fields (LTFs), for each of the data fields to accommodate time-reuse scheduling. Communicating a separate STF for each data field may allow receivers to re-adjust automatic gain control (AGC) when the data fields carry different numbers of space-time-streams. Likewise, communicating separate sets of LTFs for each data field may allow different beamforming parameters to be applied to different data fields.
US11025281B2

A memory system includes a nonvolatile memory and a memory controller that encodes first XOR data generated by performing an exclusive OR operation on pieces of user data, wherein a value of each bit of the XOR data is generated by performing an exclusive OR operation on values of bits that are at one of a plurality of bit positions of a piece of user data, generates codewords by encoding the plurality of pieces of user data and the generated XOR data, respectively, and stores the codewords in the nonvolatile memory. The memory controller also performs a read operation by reading the codewords from the nonvolatile memory and decoding them. When the decoding of two or more of the codewords fails, the memory controller generates second XOR data, and corrects the value of one of the bits corresponding to a codeword whose decoding failed, based on the second XOR data.
US11025280B2

A transmitting apparatus is provided. The transmitting apparatus includes: an encoder configured to perform a low-density parity check (LDPC) encoding on input bits using a parity check matrix to generate an LDPC codeword comprising information word bits and parity bits; an interleaver configured to interleave the LDPC codeword; and a modulator configured to map the interleaved LDPC codeword onto a modulation symbol, wherein the modulator is further configured to map a bit included in a predetermined bit group from among a plurality of bit groups constituting the LDPC codeword onto a predetermined bit of the modulation symbol.
US11025273B2

Systems and methods are provided for reducing error in data compression and decompression when data is transmitted over low bandwidth communication links, such as satellite links. Embodiments of the present disclosure provide systems and methods for variable block size compression for gridded data, efficiently storing null values in gridded data, and eliminating growth of error in compressed time series data.
US11025269B2

According to an exemplary embodiment, a capacitively coupled continuous-time delta-sigma modulator includes an instrumentation amplifier amplifying an input voltage to an output voltage of a predetermined magnitude, a delta-sigma modulator outputting a bit signal quantized depending on a sampling frequency based on the output voltage and to convert the bit signal into a digital-to-analog conversion voltage, and a ripple reduction loop unit generating a demodulation voltage, in which a ripple is removed from the output voltage, depending on an RRL operating frequency to feed the demodulation voltage back to the instrumentation amplifier. The RRL operating frequency is equal to the sampling frequency.
US11025259B2

Systems and methods for integrating injection-locked oscillators into transceiver arrays are disclosed. In one aspect, there is provided an injection-locked oscillator (ILO) distribution system including a master clock generator configured to generate a master clock signal. The ILO distribution system also includes an ILO distribution circuit including an ILO and configured to receive the master clock signal. The ILO is configured to generate a reference clock signal based on the master clock signal. The ILO distribution circuit is further configured to generate an output signal indicative of an operating frequency of the ILO. The ILO distribution system further includes an injection-locked detector (ILD) configured to receive the master clock signal and the output signal. The ILD is further configured to determine whether the ILO is in a locked state or in an unlocked state based on the master clock signal and the output signal.
US11025247B1

In one aspect, a gate driver circuit includes a clamp circuit connecting a first node to a second node. The clamp circuit is configured to provide a clamp voltage. The gate driver circuit also includes a first driver connected to the first node and to the second node. The first driver comprising a first input configured to receive the clamp voltage from the clamp circuit. The gate driver circuit further includes a first transistor having a drain connected to the first node, a source connected to a circuit output and a gate connected to an output of the first driver. The first transistor has a gate-to-source voltage and an output voltage of the circuit output does not exceed the clamp voltage less the gate-to-source voltage of the first transistor.
US11025245B2

The present invention relates to a control circuit controlling a switching device. The control circuit is a control circuit controlling first and second switching devices which are serially connected between first potential and second potential lower than the first potential and operate in a complementary manner. The control circuit includes a first control circuit controlling the first switching device and a second control circuit controlling the second switching device, and performs variable control of a circuit constant of each of the first and second control circuits based on a temperature of one of the first and second switching devices.
US11025240B2

Circuits and methods for delay mismatch compensation are described. A circuit may comprise multiple data paths between a signal source, such as a driver, and a load. The paths may have different lengths, thus causing delay mismatches. An exemplary circuit of the type described herein may comprise delay elements and at least one feedback circuit designed to compensate for such delay mismatches. The circuit may operate in different phases, such as a compensation phase and a driving phase. In the compensation phase, rings oscillators including delay elements and the at least one feedback circuit may be formed. In this phase the delay may be adjusted to compensate for mismatches. In the driving phase, the signal source may be connected to the load.
US11025234B1

Methods and systems for regulating supply voltage is described. In an example, a device can receive unregulated supply. The device can be connected to a ring oscillator and an integrated circuit. The device can be configured to regulate the unregulated supply to a first voltage. The device can be further configured to provide the regulated supply to the ring oscillator, where the ring oscillator operates with the regulated supply. The device can be further configured to, in response to a change in the regulated supply from the first voltage to a second voltage, adjust the changed regulated supply to return to the first voltage to cause the ring oscillator to operate with a constant regulated supply having the first voltage.
US11025231B1

In one embodiment, a tuning network includes: a controllable capacitance; a first switch coupled between the controllable capacitance and a reference voltage node; a second switch coupled between the controllable capacitance and a third switch; the third switch coupled between the second switch and a second voltage node; a fourth switch coupled between the second voltage node and a first inductor; the first inductor having a first terminal coupled to the fourth switch and a second terminal coupled to at least the second switch; and a second inductor having a first terminal coupled to the second terminal of the first inductor and a second terminal coupled to the controllable capacitance.
US11025230B2

Trans-filter/Detectors are extremely sensitive circuits that recover exponentially modulated signals buried in noise. They can be used wherever Matched Filter/Coherent Detectors are used and operate at negative input signal-to-noise ratios to recover RADAR, SONAR, communications or data signals. Input signal and noise is split into two paths where complementary derivatives are extracted. Outputs of the two paths are equal in amplitude and 180 degrees relative to each other at the band center frequency. The outputs are summed, causing stationary in-band noise to be reduced by cancellation while exponentially modulated signals are increased by addition. Trans-filters are Linear Time Invariant circuits, have no noise×noise threshold and can be cascaded, increasing in-band signal-to-noise ratio prior to detection. Trans-filters are most sensitive to all types of digital modulation, producing easily detected polarized pulses synchronous with data transitions. Trans-filters do not require coherent conversion oscillators and complex synchronizing circuits.
US11025222B2

A vibration element includes a base and a vibrating arm extending from the base. The vibrating arm includes an arm positioned between the base and a weight. A weight film is disposed on the weight. The weight has a first principal surface and a second principal surface in a front and back relationship with respect to a center plane of the arm. A center of gravity of the weight is located between the first principal surface and the center plane of the arm. A center of gravity of the weight film is located between the second principal surface and the center plane of the arm.
US11025211B2

An amplification apparatus as the embodiment of the present invention includes a switching amplifier and an adjuster. The switching amplifier is driven on the basis of a control signal and amplifies an input signal to be amplified to generate an amplified signal. The adjuster adjusts the control signal before it is inputted into the switching amplifier. Specifically, the adjuster adjusts at least one of a pulse width of the control signal and a delay time of the control signal with respect to the signal to be amplified.
US11025210B2

Systems and methods related to power amplification and power supply control. A method of operating a power amplification control system can include receiving, by an interface, a transceiver control signal from a transceiver. The method can further include generating, by a power amplifier control component, a power amplifier control signal based on the transceiver control signal from the transceiver. The method can also include generating, by a power supply control component, a power supply control signal based on one or more of the transceiver control signal from the transceiver or a local control signal from the power amplifier control component.
US11025209B2

A power amplifier layout can include multiple cascoded devices each having a radio-frequency transistor coupled to a cascode transistor. An orientation of a radio-frequency transistor of a first cascoded device relative to a cascode transistor of the first cascoded device can be configured to be different than an orientation of a radio-frequency transistor of a second cascoded device relative to a cascode transistor of the second cascoded device.
US11025206B2

Provided is a power supply for envelope tracking, comprising: a first driving unit for finally providing a first current based on a preset and variably-set first high-frequency threshold or threshold interval; a second driving unit for finally providing a second current based on a preset and variably-set second low-frequency threshold or threshold interval; a third driving unit for providing a third current based on a delayed signal; and a superimposing unit for superimposing the first current, the second current, and the third current to provide a supply voltage of a radio-frequency power amplifier. A new power supply for envelope tracking is provided, which is capable of more efficiently providing a supply voltage of the radio frequency power amplifier by superimposing a first current to a third current.
US11025204B2

The present invention provides a circuit having a filter with an amplifier circuit for filtering and amplifying an input signal to generate an output signal, wherein a corner frequency of the filter is adjustable to control a settling time of the output signal.
US11025199B2

An oscillator comprising: a resonator including a negative resistance element; a voltage bias circuit configured to apply a voltage across the negative resistance element; and a first shunt element in which a resistor and a capacitor are electrically connected in series, wherein the negative resistance element and the first shunt element are electrically connected in parallel to the voltage bias circuit.
US11025196B2

An LC oscillator architecture in which an LC tank is driven by a negative resistance element (amplifier) including first and second Vbe/Vgs multipliers cross-coupled to the LC tank. Each Vbe/Vgs multiplier circuitry including a transistor with a control terminal as a negative input, a reference terminal as a positive input, and an output terminal, a shunt resistance connected between the control terminal and the reference terminal, a series resistance connected between the control terminal and the output terminal for one of the same transistor or the other transistor, and a shorting capacitance connected between the control terminal of the transistor, and the output terminal of the transistor of the other Vbe/Vgs multiplier. An example application is an LC VCO, such as for a PLL, CDR, or retimer.
US11025195B2

In certain aspects, an apparatus includes a transformer including an input inductor and an output inductor, wherein the input inductor is magnetically coupled to the output inductor. The apparatus also includes a transconductance driver configured to drive the input inductor based on an input signal. The apparatus further includes a feedback circuit configured to detect an output voltage swing at the output inductor, generate a regulated voltage at the input inductor, and control the regulated voltage based on the detected output voltage swing.
US11025193B2

A solar module comprising a substrate, a honeycomb structure on the substrate, a solar panel on the honeycomb structure, such that the substrate, honeycomb and solar panel form a sandwich having an exterior perimeter, a rotary junction box configured to be manipulated through the substrate between at least first and second electrical configurations, a plurality of electrical couplers along the exterior perimeter, and a plurality of electrical connectors connecting the solar panel, the rotary junction box, and the electrical couplers; wherein the honeycomb structure defines one or more channels and a pocket, the channels facilitating the electrical connectors and the pocket receiving the rotary junction box.
US11025191B2

Disclosed herein are various methods, systems, and apparatuses relating to vertical structural supports, including acute Z-shaped piers and further including vertical structural features that provide additional structural support for various types of piers.
US11025190B2

Provided is a motor control device generating a torque command such that a detection speed of a motor matches a command speed, and controlling the motor. The motor control device includes: a torque command differential component taking a differential of the torque command and obtaining a torque command differential value; a motor actual speed second order differential component taking a second order differential of the detection speed of the motor and obtaining a motor jerk; and a runaway detection component determining that the motor is in a runaway state in a case where an abnormal state in which a sign of the motor jerk and a sign of the torque command differential value do not match continues for a predetermined time or more. Accordingly, the runaway of the motor can be detected in a short time while the erroneous detection can be suppressed.
US11025187B2

A method of generating motor driving signal includes: obtaining acceleration segment signal for driving motor to start vibrating, constant segment signal for achieving low-frequency vibration tactile effect of the motor, and attenuating segment signal for decreasing vibration quantity of the motor in low frequency manner, frequency of constant segment signal and of attenuating segment signal being smaller than frequency of acceleration segment signal; splicing the acceleration segment signal with the constant segment signal, and reserving idle period with no signal output therebetween to obtain first motor driving signal; adjusting parameter of constant segment signal of first motor driving signal according to vibration feeling requirement, and splicing attenuating segment signal after the adjusted first motor driving signal to obtain second motor driving signal; and adjusting parameter of attenuating segment signal of second motor driving signal, and determining second motor driving signal with highest braking efficiency as final motor driving signal.
US11025185B2

An adaptive control system (2) for controlling a plant (3) is disclosed. The adaptive control system comprises a control system (5) configured to generate drive signals (16) for the plant in dependence upon a reference signal (8) and an error signal, and a state observer (17) or state sensor (17′; FIG. 2) configured to generate an estimate of a state of the plant in dependence upon the reference signal. The system comprises an error combiner (12) configured to selectably combine a first error (11) determined from the reference signal and a set of measurements of the plant and a second error (13) determined from the reference and the estimate.
US11025182B2

A signal processing apparatus includes a processor, a memory storing a program, and an integration circuit that performs filter processing on an input signal to output a processed signal. The processor samples an output signal output from the integration circuit in a sampling period Ts and stores a sampled value of the output signal in accordance with the program, and detects a duty of the input signal based on a difference between a value of the output signal at a time t0 representing a present time point and a sampled value of the output signal obtained at a time t0−n representing an earlier time than the time t0 by an n sampling period when n is a positive integer, the value of the output signal, a value of the integer n, the sampling period Ts, and a time constant of a filter of the integration circuit.
US11025173B2

Vehicles and vehicle power circuits are disclosed for providing multiple different voltages from the same power source. An example vehicle includes a power source, a plurality of electrical loads, and a power circuit. The power circuit is electrically connected to the power source and the plurality of electrical loads. The power circuit includes a plurality of power segments connected in parallel to the power source, each power segment comprising a DC to DC converter and an ultra capacitor in series with the DC to DC converter, wherein the ultra capacitors of the plurality of power segments are connected in series.
US11025160B2

A power conversion device includes a rectifying circuit that full-wave rectifies an input AC power, a first conversion circuit that includes a passive element, a first switching element, and a second switching element and digitally converts a rectified power while compensating a power factor of the rectified power through at least one of the passive element, the first switching element, and the second switching element, a second conversion circuit that converts the digitally-converted power into a power with a specified magnitude and output the power with the specified magnitude, a device circuit that consumes an output power of the second conversion circuit, a first control circuit that monitors current consumption of the device circuit and controls an amount of output current of the second conversion circuit based on the current consumption of the device circuit, and a second control circuit that controls a power factor compensation degree of the first conversion circuit based on the current consumption, wherein the second control circuit may alternately activate the first and second switching elements according to the current consumption or deactivate the second switching element and switch the first switching element.
US11025156B2

A power apparatus, a current detecting circuit and a current detecting method are provided. The power apparatus includes a power conversion circuit and the current detecting circuit. The power conversion circuit generates an output current. The current detecting circuit includes first and second current sensing resistors and a control circuit. The first current sensing resistor and the second current sensing resistor sense the output current to generate first and second sensing voltage, respectively. The control circuit receives the first sensing voltage and the second sensing voltage, and converts the first sensing voltage and the second sensing voltage respectively into a first current sensing value and a second current sensing value. The control circuit triggers a protection mechanism when the first current sensing value is greater than a first overcurrent protection value. In the case where the first current sensing value is not greater than the first overcurrent protection value, the control circuit triggers the protection mechanism if the second current sensing value is greater than a second overcurrent protection value. The first overcurrent protection value is greater than the second overcurrent protection value.
US11025155B2

There is provided a power supply control device as a control main entity of a switching power supply. The power supply control device includes a minimum ON width setting part configured to set a minimum ON width of an output switch according to a load.
US11025147B2

A vibration motor includes a housing, and a stator, a vibrator, and an elastic support component elastically supporting the vibrator that are accommodated in the housing. The housing includes a top wall, a bottom wall disposed opposite the top wall and a side wall, the stator includes a first coil, a second coil and an iron core disposed corresponding to the coil, the first the coil and the second coil are sleeved over the iron core respectively from two ends of the iron core, the vibrator is sleeved around the stator and spaced from the stator, the elastic support component supports the vibrator to axially vibrate, the top wall is provided with a through hole running through the top wall, the first coil is provided with a coil lead wire, and the coil lead wire extends from the through hole to the exterior of the housing.
US11025142B2

A method of forming a rotor lamination includes, with a laser, fabricating a first region of a lamination layer with a first powdered metal having a first composition. The first region at least partially defines a magnet pocket. The method further includes, with a laser, fabricating a second region of the lamination layer with a second powdered metal having a second composition different than the first composition. The second region is disposed immediately adjacent the first region.
US11025139B2

A motor includes a stator, a rotor rotatable relative to the stator, a circuit board fixed to the stator, and a heat sink disposed on the circuit board, a side surface of the circuit board facing the heat sink has an insulating region and a metal heat dissipation region without solder mask. The thermal resistance between the circuit board and the heat sink can be reduced by the metal heat dissipation region, thereby improving the heat dissipation of the circuit board.
US11025138B2

An electric machine has a housing and has a stator inside the housing, surrounding a rotor arranged on a motor shaft so as to be fixed to the shaft. A rotary field winding, at the ends of the stator, forms a winding head. The winding heads are embedded in a thermally conductive encapsulation material, wherein the encapsulation material is in thermal contact with the housing along the outer circumference of the winding head. A segmented cooling plate is arranged on the inner circumference of the encapsulation winding head.
US11025134B2

A motor includes: a rotor core which rotates about an axis; a plurality of magnets which extend in an axial direction of the axis inside the rotor core and are disposed in a circumferential direction; a shaft body which is disposed coaxially with the rotor core and has a hollow portion through which a fluid is able to pass from a first side to a second side in the axial direction; and a plurality of heat radiation portions which are disposed along the magnet in the circumferential direction and have a planar portion disposed to be parallel to a side surface of the magnet facing a radial direction, wherein the heat radiation portion extends to be closer to the second side than a second side core end surface located on the second side in the axial direction of the rotor core.
US11025129B2

A motor includes a section with coils, a stator core, a wire support made of resin and fixed to the stator core, a cylindrical portion with a cylindrical shape extending in the axial direction on a radially outer side of the coils, and a top plate portion extending from the cylindrical portion toward an inside of the stationary section in a radial direction. The wire support includes holding portions provided with through holes or notches penetrating in the axial direction. Conducting wires drawn from the coils extend upward through the through holes or the notches. The top plate portion includes top plate holes. The holding portions and the top plate holes are mutually disposed at a position overlapping in the radial direction and the holding portions are within circumferences of the top plate holes when viewed in the axial direction.
US11025128B2

A protective cover for a rotary electric machine including: a bottom portion formed into an approximately circular shape; a side wall extending from the bottom portion along an outer periphery thereof; and an opening portion, of approximately circular shape and formed by an end of the side wall, wherein the side wall has a plurality of guide ribs formed on an inner side thereof and arranged apart from each other along the outer periphery of the bottom portion, wherein each of the guide ribs has a chamfered portion at an end on a side closer to the opening portion, and wherein each of the guide ribs has a height of a top portion of each of the plurality of guide ribs from the side wall allows the top portion to contact a side surface of the component when the protective cover is mounted to the rotary electric machine.
US11025125B2

A concrete vibrator motor includes a motor assembly that provides actuation and a cage assembly that surrounds the motor assembly to shield it and provide one or more operator handles. The motor assembly includes a motor housing, a motor pod, and a plurality of brushes that are used to secure the motor pod within the motor housing. The cage assembly includes a pair of endcaps and handles arranged beneath the endcaps. The endcaps are configured to inhibit fluid ingression into the motor housing while permitting air circulation between the ambient environment outside of the motor housing and within the motor housing. Thus, the motor assembly may intake air into the motor housing and exhaust air therefrom without contamination from the ambient environment.
US11025124B2

A motor includes a mounting bracket; a stator mounted to one of opposite sides of the mounting bracket; a rotor is rotatably supported on the stator; and a control unit the other of the opposite sides of the mounting bracket away from the stator. The control unit includes a plate-shaped heat dissipating member fixed to the mounting to the mounting bracket, and a circuit board attached to a side of the heat dissipating member away from the mounting bracket. A seal is formed between a periphery of the heat dissipating member and the mounting bracket.
US11025121B2

An electric motor includes a stator; an annular end cap, fastened at a first end of the stator; a threaded seat that is mounted at an outward end face of the annular end cap for receiving a first gas foil thrust bearing; a shaft, inserted through the stator, through the annular end cap, and through the threaded seat; a thrust runner mounted at an end of said shaft adjacent the threaded seat; a first gas foil thrust bearing that is mounted into the threaded seat, adjacent a face of the thrust runner facing the stator; a bearing cap that has a threaded fitting by which it is attached onto the threaded seat; and a second gas foil thrust bearing that is mounted into the bearing cap adjacent to a face of the thrust runner opposite the first gas foil thrust bearing.
US11025115B2

An electric machine rotor assembly includes a rotor core defining a rotor axis. Windings are seated in the rotor core. A plurality of wedges circumferentially spaced apart around the rotor core relative to the rotor axis. Each rotor core extends axially and separates between two respective portions of the windings. A supply end plate is mounted at a first axial end of the rotor core. A return end plate is mounted at a second axial end of the rotor core opposite the first axial end. A flow path for coolant fluid extends through the supply end plate into the wedges, through the wedges and into the return end plate, and through the return end plate.
US11025111B2

A rotor for connection to a stationary member for use in an electric machine is provided. The rotor includes a body defining a center of rotation of the body. The body further defines a first surface extending in a direction generally perpendicular to the center of rotation. The rotor also includes a magnet connected to the body and an adhesive. The adhesive is positioned between the magnet and the body. The adhesive is adapted to assist in securing the magnet to the body. The first surface of the body is adapted to permit removal of material from the body and to assist in balancing the rotor.
US11025102B2

Methods and apparatus are disclosed of a wireless power transmission system (WPTS) and wireless power receiver client (WPRC). The WPTS may directionally transmit wireless power to a first WPRC while concurrently directionally transmitting wireless data to at least a second WRPC. The WPTS and WPRC may reuse circuitry configured to transmit/receive wireless power to also transmit/receive wireless data.
US11025100B2

The present description relates to a wireless power transmission/reception device. The present description provides a magnetic field controlling member for focusing a magnetic field between a primary coil, which is connected to a power source of a wireless power transmission system and forms a magnetic field, and a secondary coil which is for receiving power by means of the magnetic field. The magnetic field controlling member includes: a substrate, between the primary coil and secondary coil, of which one side faces the primary coil or secondary coil; a pattern unit which is placed on the substrate and has a plurality of thin films that are positioned at a predetermined distance away from each other; and a connecting unit which electrically connects the plurality of thin films.
US11025096B2

Disclosed is an apparatus and method for wirelessly transmitting power to power receivers from a power transmitter. The present disclosure provides a rational search procedure for locations of the power receivers, and provides a function of simultaneously charging multiple receivers using microwave multi-focusing. The wireless power transmission method performed by a power transmitter includes determining angular coordinates of the power transmitter in relation to a position of at least one power receiver; determining a distance between the at least one power receiver and the power transmitter based on the determined angular coordinates by using a focused microwave field; determining a location of the at least one power receiver based on the determined angular coordinates and the distance; and wirelessly transmitting power by focusing the microwave field to the determined location of the at least one power receiver.
US11025094B2

A wireless power receiving device includes a first resonance circuit configured to have a first resonance frequency; a second resonance circuit configured to have a second resonance frequency lower than the first resonance frequency; and a rectifying circuit connected to the first resonance circuit and the second resonance circuit without a switch and configured to rectify power received through the first resonance circuit and the second resonance circuit.
US11025088B2

The present disclosure relates to a parameterizable energy supply apparatus comprising a communications interface for receiving parametrizing data via a communications network; and a processor which is designed to adjust an output characteristic of the parameterizable energy supply apparatus on the basis of the parametrizing data received.
US11025084B2

A first electronic device, electronically coupled to a second device for supplying a charge to the second electronic device, tracks the voltage requirements of the second device and dynamically adjusts its output voltage upwards or downwards to match such requirements. The second electronic device may provide feedback to the first electronic device through a feedback loop. The feedback may include an indication of the voltage requirements and/or instructions for adjusting the voltage output of the first electronic device. The second device may be, for example, a wearable audio device, while the first device is a case for the wearable audio device.
US11025082B2

An electronic device and a method thereof, which supports fast wireless charging, are provided. The electronic device includes a wireless power circuit, and one or more processors which are functionally connected with the wireless power circuit, wherein the one or more processors are configured to execute detecting an external electronic device through the wireless power circuit, determining wireless power information corresponding to the external electronic device, determining whether the external electronic device supports a first charging power or a second charging power, at least partially based on the wireless power information, providing the first charging power to the external electronic device through the wireless power circuit, at least partially based on the determination that the external electronic device supports the first charging power, and providing the second charging power to the external electronic device through the wireless power circuit, at least partially based on the determination that the external electronic device supports the second charging power.
US11025071B2

A power supply unit for an aerosol inhaler includes: a power supply that is able to discharge power to a load for generating an aerosol from an aerosol generation source; and a control unit that is configured to control at least one of charging and discharging of the power supply such that the power supply does not become one or both of a fully charged state and a discharging termination state.
US11025065B2

The present invention relates to a method of monitoring oscillations that are liable to interact in an electrical power network, in dependence on measurement of AC waveforms in the electrical power network. The method comprises receiving first waveform data corresponding to an electrical quantity in each phase of at least two phases of three-phase AC waveforms at a location in the electrical power network. The method further comprises applying a transformation to the first waveform data to provide therefrom second waveform data corresponding to an electrical quantity at the location in a single phase representation, the second waveform data depending on the at least two phases.
US11025061B2

A power usage prediction system implements a long short term memory (LSTM) neural network to receive power usage inputs and generate predicted values of power consumption for a plurality of devices. A user provides configuration input regarding the time steps at which the predicted values are to be generated and the various devices for which the predicted values of power consumption are desired. Whenever a power usage input is received, the LSTM neural network outputs the corresponding hidden state values for a plurality of time steps as the predicted values. The hidden state values are each compared to a final cell state value corresponding to a power consumption threshold of the time interval which includes the time steps. Based on the comparison, a power usage condition is recorded. Various actions to mitigate the high power consumption can be implemented in response to recording the power usage condition.
US11025060B2

Example embodiments for providing computation resource availability based on power-generation signals are presented herein. An embodiment may involve receive information indicative of power-generation economic signals at a first control system and identifying at least one of: (i) a change in a power-generation economic signal that exceeds a predefined threshold change, (ii) a power-generation economic signal that is below a predefined lower threshold limit, or (iii) a power-generation economic signal that is above a predefined upper threshold limit. Responsive to the identification, the embodiment involves performing at least one of: (i) adjusting a rate of power use by a flexible datacenter, and (ii) providing an indication of computation resource availability to a second control system. The flexible datacenter may include a behind-the-meter power input system, a power distribution system, and computing systems configured to receive power from the behind-the-meter power input system via the power distribution system.
US11025058B2

Systems and techniques for tolerance-based intelligent edge network energy delivery are described herein. A flexibility metric may be calculated for a node of the edge network. The flexibility metric of the node and flexibility metrics of a set of additional nodes of the edge network may be ranked to create a set of flexibility ranked edge nodes. A notification may be received of a demand response event. A candidate node subset may be identified from the set of flexibility ranked nodes based on requirements of the demand response event and a ranked order the set of flexibility ranked nodes. A demand response command may be transmitted to the candidate node subset upon determining that the candidate node subset satisfies the requirements of the demand response event. The demand response command may cause nodes of the candidate node subset to alter energy consumption for a time period of demand response event.
US11025050B2

A device (1) for connecting an electric power source (8) with an electric appliance (9) comprising a first electric coil (4), connecting the electric power source (8) with the device (1) and a second electric coil (5), connecting the electric appliance (9) with the device (1), at least one sensor (6) arranged outside the device (1) for identifying a speed of air, an alarm device connected to the at least one sensor (6) configured such that depending on the speed of air generates a pre-alarm signal and/or a main alarm signal and/or cuts an electric connection between the electric power source (8) and the electric appliance (9), and an electric circuit having an input element (7) configured such that by operating the input element (7) after the end of a preset period of time, the electric connection between the electric power source (8) and the electric appliance (9) is activated, if the at least one sensor (6) does not identify a preset speed of air.
US11025042B2

A universal ring and plate assembly is disclosed for use with an electrical or utility box. The universal ring and plate design can achieve any finish wall thickness by stacking plates and securing them to the universal ring, even after the drywall, tile, stone and/or other wall materials have been installed. The universal ring and plate simplifies the current installation process, eliminates the need for the multiple different depth rings, and accommodates all changes to the finished wall thickness by the owner, architect or builder, without having to tear down portions of the finished wall.
US11025040B2

A modular electrical conduit split assembly for efficient installation of electrical wiring. The modular electrical conduit split assembly includes an elongated, tubular conduit having at least one dividing wall running through the interior channel therein, defining separate chambers wherein each chamber includes an indicium disposed along an external surface of the conduit. A connection mechanism such as a coupling sleeve is disposed on an end of the conduit and configured to receive the end of a separate piece of conduit therein. Each chamber within the conduit is configured to receive electrical wiring therethrough which can be coordinated using color coded indicia appearing along the external surface.
US11025037B2

An arrester such as an arrester for protection against overvoltages is disclosed. In an embodiment an arrester includes a housing configured to act as an external electrode, a central electrode arranged completely within an inner region of the housing, a discharge region arranged between the central electrode and the housing, a ceramic body separating the housing and the central electrode, wherein the ceramic body is arranged in an offset manner relative to the discharge region and a shielding element arranged on an inside of the housing, and wherein the shielding element extends over an entire longitudinal extent of the central electrode along the inside of the housing.
US11025031B2

A laser diode apparatus has a first waveguide layer including a gain region connected in series with a second waveguide layer with a second gain region. A tunnel junction is positioned between the first and second guide layers. A single collimator is positioned in an output path of laser beams emitted from the first and second waveguide layers. The optical beam from the single collimator may be coupled into an optical fiber.
US11025030B2

An optical module includes a circuit board, an optical fiber, an optical fiber monitoring chip, a laser chip, a laser driving chip and a lens assembly. A bottom surface of the lens assembly is covered above the laser chip and the optical monitoring chip. A groove is on a top surface of the lens assembly. A bottom of the groove protrudes to form a first interface and a second interface. The laser chip is configured to emit light. The first interface is configured to reflect the emitted light to obtain first reflected light. The second interface is configured to reflect a portion of the first reflected light to obtain a second reflected light and refract another portion of the first reflected light to obtain a first refracted light. The second reflected light is transmitted to the optical monitoring chip. The first refracted light is transmitted to the optical fiber.
US11025022B2

An adapter for changing pitch of a connector, and a method of manufacturing the same, in which a first pin part and a second pin part, which are electrically connected, are formed at both end portions of a housing forming an exterior appearance of an adapter, so that it is possible to remove a wire harness and the like, which occupies a large volume in existing adapters, and so that it is possible to miniaturize a product by forming an integrated adapter by using fewer components, and to innovatively reduce production costs compared to existing adapter products.
US11025017B2

In example implementations, an apparatus includes a plurality of light emitting diodes (LEDs) and a controller. The controller is in communication with the plurality of LEDs, a sink device and a host device. A universal serial bus type C (USB-C) functionality of the sink device and the host device is identified by the controller. The controller operates at least one of the plurality of LEDs in accordance with one of a plurality of different LED operation profiles that is associated with the USB-C functionality of the sink device and the host device.
US11025011B1

An electrical connector (10) has a body, a center conductor (55), and an insulator (75). The body has a receptacle end (30), a board end (25) having a rear plane (85) and a plurality of fastener holes for a plurality of fasteners (50), a void extending from the receptacle end to the board end, and a grounding feature (70) substantially surrounding the void at the board end, the grounding feature extending beyond the rear plane and being approximately in the shape of a “V” having a base which points away from the rear plane. The center conductor is in the void and extends from the receptacle end to beyond the rear plane of the board end. The insulator is in the void and substantially surrounds the center conductor in the void.
US11025010B2

An electrical connector includes an insulative housing and a plurality of contacts retained therein. The housing forms a central slot along a longitudinal direction, and includes a base, opposite first wall and second wall extending from the base and located by two sides of the central slot. The contact includes a retaining section retained to the corresponding first or second wall, and a spring arm with a contacting section at a free end, extending from the retaining section and into the central slot wherein a width/thickness ratio in the contacting section is set within a range between 0.8˜1.28.
US11025006B2

A connector assembly includes a connector module having a connector body with side edges and end edges. The connector body has contact channels holding contacts. The connector assembly includes a mounting frame having side walls and an end wall opposite a window between the side walls. The window is open to and provides access to a passage that receives the connector module. The mounting frame includes a connector module support structure for supporting the connector module in the passage that defines a confined space oversized relative to the connector body of the connector module to allow a limited amount of floating movement in the confined space in a lateral direction that is perpendicular to the mating direction.
US11025005B1

A lever-type connector including a female terminal, a female housing, a contact pressure applying member attached to the female housing from a front side in a fitting direction and can be moved between a low contact pressure position at which the female terminal is brought into contact with a male terminal with low contact pressure and a high contact pressure position that is located on a rear side in the fitting direction with respect to the low contact pressure position and at which the female terminal is brought into contact with the male terminal with high contact pressure due to application of contact pressure to the female terminal. A lever is movably attached to the female housing to move the contact pressure applying member from the low to the high position after the completion of fitting.
US11025001B2

A plug-in connector part for plug-in connection to an associated mating plug-in connector part includes: a holder frame; and a plurality of modular contact inserts inserted into the holder frame which each include a plug-in portion for connecting to the mating plug-in connector part in a plug-in direction and have a contact element arranged thereon for contacting the mating plug-in connector part. At least one of the contact inserts includes a module housing inserted into the holder frame and a contact support which is arranged on the module housing, is movable relative to the module housing in the plug-in direction, and forms the plug-in portion of the contact insert.
US11024998B2

A kit which has a first and second component parts, which are adapted for connection with each other. The first component part has a first array of electrical sensors, two substantially parallel lateral walls on the sides of the electrical connectors, two rails extending along the sides of the array, a front contact point and an overhang for receiving the second part. The second component part has a second array of electrical sensors for connection to the first array, front end configured to fit between the lateral walls of the first connector, and lateral sides having rail reliefs to fit the rails of the first connector. Connection of the first component part and the second component part forms a shoulder that aligns to locate the second array of electrical connectors in correct position for connection to the first array of electrical connectors.
US11024994B2

Various examples of the present invention relate to a connector device having a multi-receiving part, the connector device enabling a SIM card and an SD card having different sizes to be individually or simultaneously mounted by using one tray, thereby increasing the spatial usability of an electronic device, having advantages in terms of outline design, saving manufacturing costs, and increasing the usability of the electronic device. Various examples, in addition to the examples disclosed in the present invention, are possible.
US11024991B2

A receptacle terminal includes a base portion having a plate shape extending in a transverse direction and a longitudinal direction and a plurality of pairs of elastic arms arranged in sequence and spaced apart from each other in the longitudinal direction. Each of the elastic arms has a contact portion contacting a plug terminal inserted into the receptacle terminal. A distance from the contact portions of a middle pair of elastic arms to the base portion is less than a distance from the contact portions of another two pairs of elastic arms to the base portion.
US11024982B2

An antenna apparatus may include: a feed line; a ground plane disposed around a portion of the feed line; a feed via electrically connected to the feed line; a first end-fire antenna pattern disposed in front of the ground plane to be spaced apart from the ground plane, and electrically connected to the feed via; a second end-fire antenna pattern electrically connected to the feed line and disposed farther forward than the first end-fire antenna pattern; and a third end-fire antenna pattern electrically connected to the feed via, and disposed in front of the first end-fire antenna pattern in such a manner that a portion of the third end-fire antenna pattern overlaps the second end-fire antenna pattern.
US11024980B2

The invention relates to a dual-polarized antenna having four dipole elements which are each provided on an associated support element, wherein a slot extends in the volume of each dipole element and is prolonged from the dipole element into the associated support element.
US11024976B2

The present invention provides a mobile terminal, which includes a Vivaldi antenna system arranged in the mobile terminal, wherein the Vivaldi antenna system includes two pairs of Vivaldi antenna arrays, opening directions of one pair of the Vivaldi antenna arrays are along a length direction of the mobile terminal, opening directions of the other pair of the Vivaldi antenna arrays are along a thickness direction of the mobile terminal, and each pair of the Vivaldi antenna arrays includes two Vivaldi antenna arrays with opposite opening directions, and the Vivaldi antenna arrays operate in a frequency band of 5G millimeter waves. Compared with the related art, the mobile terminal provided by the present disclosure has wide and uniform beam bandwidths in a non-scanning direction, thus achieving excellent spatial coverage efficiency.
US11024973B2

An antenna structure includes an antenna pattern, a ground layer and two microstrip lines. The antenna pattern includes a first portion and a second portion. The first portion is rectangle shape and includes a first, a second, a third and a fourth sides. The second portion protrudes outwardly from the first side and the second side. The ground layer has two slots. Projections of the two slots to the antenna pattern are close to the third and the fourth sides. Projections of the two microstrip lines to the antenna pattern are perpendicular to the third and the fourth sides. Each microstrip line has a first section and a second section. Projection of the second section to the antenna pattern is closer to a center of the first portion than projection of the first section. A width of the first section is greater than a width of the second section.
US11024963B2

A wireless device with an antenna plate includes one or more components; and at least one antenna integrally formed with the antenna plate. The at least one antenna has a low frequency section and a high frequency section, wherein the high frequency section has a slot, the dimensions of the slot being formed in part by a parasitic arm formed within the high frequency section. A method for manufacturing a wireless device having an antenna plate includes stamping a metallic sheet to form the antenna plate having at least one antenna element; and folding the at least one dual-band antenna element about a portion of a perimeter of the stamped sheet forming an upper surface, a side wall and a lower surface of the at least one antenna element.
US11024957B1

A method and apparatus are provided for nulling a radio frequency (RF) beam for a high-altitude platform (HAP). A transmitter generates an RF signal. A primary antenna system generates an RF beam based on the RF signal. One or more processors determine a result indicating whether to modify the RF beam. When the result indicates to modify the RF beam, a detachable nulling subassembly generates nulling signals based on the RF signal to modify the RF beam generated by the primary antenna system.
US11024954B2

A method of forming a semiconductor package structure includes providing a first wafer-level package structure having a die region surrounded by a scribe line region. The first wafer-level package structure includes a first encapsulating layer, a first redistribution layer (RDL) structure formed on the first encapsulating layer, a first antenna element formed in the first RDL structure and corresponding to the die region, and a semiconductor die in the first encapsulating layer and corresponding to the die region. A second wafer-level package structure is bonded onto the first RDL structure using a first adhesive layer. The second wafer-level package structure includes a second encapsulating layer attached to the first adhesive layer, and a second antenna element formed on the second encapsulating layer. The second antenna element and the first antenna element form a pitch antenna after the bonding of the second wafer-level package structure.
US11024947B2

A mobile terminal is provided that includes a metal frame including a base unit and a side unit, a main substrate located on a rear surface of the base unit, a display unit seated on a front surface of the base unit, and feed lines extending from the main substrate, connected to the side unit and supplying power to the side unit. The side unit includes a first conductive member including a first part and a second part, a second conductive member including a third part and a fourth part, a third conductive member located between the first and second conductive members, a first slit provided between the first and third conductive members and a second slit provided between the second and third conductive, and a length of the second part is two or more times a length of the first part.
US11024945B2

Embodiments of the present disclosure relate to the field of communications technologies, and disclose an antenna system and a mobile terminal. The antenna system is applied to the mobile terminal. The mobile terminal includes a metal frame and a metal middle frame accommodated in the metal frame and connected to the metal frame, and the antenna system includes at least one antenna group formed on the metal middle frame and the metal frame, and each antenna group includes a first antenna and a second antenna away from each other, where the first antenna and the second antenna are spaced away from each other along a circumferential direction of the metal frame. In the present disclosure, at least one antenna group is added to the terminal based on the original structure, ensuring that the terminal can satisfy a multi-band working requirement and a data transmission requirement.
US11024942B2

The present disclosure provides an antenna-in-package system and a mobile terminal. The mobile terminal includes a main board, wherein the antenna-in-package system includes a substrate, a metal antenna provided on a side of the substrate facing away from the main board, an integrated circuit chip provided on a side of the substrate facing towards the main board, a feeding network provided in the substrate and spaced apart from the metal antenna, and a circuit connecting the feeding network with the integrated circuit chip. The circuit is electrically connected to the main board. The feeding network is provided with a slit at a position corresponding to the metal antenna. The metal antenna is fed with power by coupling with the feeding network via the slit.
US11024938B2

An electronic device is provided. The electronic device including a housing comprising a front plate which faces a first direction, a back plate which faces a second direction opposite from the first direction, and a lateral member which surrounds a space between the front plate and the back plate and has at least one part formed from a metal material, a display seen through a first part of the front plate, an antenna module positioned inside the space, and a wireless communication circuit. The antenna module includes a first surface facing a third direction forming an acute angle with the second direction, a second surface facing a fourth direction opposite from the third direction, at least one first conductive element disposed on the first surface or inside the antenna module so as to face the third direction, and at least one second conductive element which is adjacent to the lateral member between the first surface and the second surface and extends in a fifth direction different from the third direction and the fourth direction and facing between the lateral surface and the first part of the front plate.
US11024935B2

A stripline radial power combiner is provided. The stripline radial combiner comprises a first stripline level comprising N radial combiner arms coupled to a first common node; a second stripline level comprising a common port coupled to a second common node; wherein the first stripline level is mounted over the second stripline level; and wherein the first common node and the second common node are coupled by a conductive via through the first stripline level and the second stripline level.
US11024925B2

A negative-electrode terminal that is secured to a sealing plate is connected to a first negative-electrode current collector. A negative-electrode tab that is connected to the negative-electrode sheet is connected to a second negative-electrode current collector. The first negative-electrode current collector and the second negative-electrode current collector are disposed along the sealing plate. The second negative-electrode current collector has an opening. The second negative-electrode current collector is disposed on the first negative-electrode current collector such that the opening faces the first negative-electrode current collector. The second negative-electrode current collector is welded to the first negative-electrode current collector around the opening.
US11024922B2

Disclosed herein is a cap assembly disposed on an open upper end part of a cylindrical can of a battery, the battery being configured to have an electrode assembly mounted in the cylindrical can, the cap assembly including a safety vent configured to rupture in order to exhaust gas when the interior pressure of the battery reaches a predetermined pressure limit, an upwardly-protruding cap plate disposed on the upper part of the safety vent, the cap plate having a through-opening configured to receive the gas exhausted therethrough, a current interrupt member attached to the lower end of the safety vent, the current interrupt member configured to interrupt electric current when the interior pressure of the battery reaches the predetermined pressure limit, and a guide member attached to the inside of the cap plate, the guide member being configured to prevent escape of a ruptured portion of the safety vent.
US11024916B2

The battery housing assembly, connected to a support shaft assembly of a string trimmer, includes a base housing member defining a chamber configured to receive a battery therein. The base housing member includes a frontal member configured to engage a front of the battery, a top member extending from the frontal member, configured to engage the top portion of the battery, and a bottom member, configured to engage a bottom portion of the battery. A first side member is configured to be removably connected to a first side of the base housing member; and a second side member configured to be removably connected to a second side of the base housing member.
US11024915B2

A battery module adapter for a vehicle or other equipment including at least one battery module and a housing assembly having a pair of battery terminals and a metal receiver functioning as an electrical connector defining a receptacle for receiving the battery module. The exterior dimensions of the housing assembly may be the same as the exterior dimensions of a standard battery.
US11024914B2

Productivity of an assembled battery is improved by shortening the takt time for assembly. An assembled battery (100) includes a battery module group (B) including one or more battery cells (150) and a cell holder (120) for holding the one or more battery cells (150), and an auxiliary module group (S) including components (210, 220, 230, 240) and a pedestal (200) on which the components (210, 220, 230, 240) are arranged. The battery module group (B) and the auxiliary module group (S) are attached together by the pedestal (200) being fastened to the cell holder (120) with bus bars (164, 165, 285, 286).
US11024912B2

Disclosed herein is a method of sealing a side portion of a pouch-shaped battery including an electrode current collector and a pouch-shaped battery case, the method including bending a lower case and an upper case connected to the lower case such that the upper case faces the lower case and the electrode current collector is disposed in the lower case, the lower case and the upper case being connected to one another at a bent portion of the pouch-shaped battery case, a primary sealing step of sealing the lower end part of the side portion of the pouch-shaped battery case adjacent to the bent portion of the pouch-shaped battery case, and a secondary sealing step of sealing the entirety of the side portion of the pouch-shaped battery case.
US11024910B2

The present disclosure relates to the development and improvement of a High-Temperature Sulfate/Sulfide device, in particular a High-Temperature battery using a Sulfate/Sulfide redox couple (HTSSB) for electrical energy storage at elevated temperatures and the like, and electrical energy storage device comprising the same.
US11024899B2

The present invention relates to a method for manufacturing a battery stack cooling plate for an electric vehicle, the method comprising: a plastic working step for plastic working each of an upper plate and a lower plate which are made of a clad material and constitute a cooling plate; a preheating step for preheating each of the upper plate and the lower plate; a coating step for coating a flux on the upper plate and the lower plate; and a brazing step for heating the upper plate and the lower plate in a state where the clad materials of the upper plate and the lower plate are in contact with each other, so as to bond the upper plate and the lower plate together.
US11024893B2

A battery of modular construction that stores electrical energy includes a battery housing, a module assembly including at least two battery modules, each with at least one positive and at least one negative electrode, and a pressing means. A method of safety operation of the battery includes equipping the battery with at least one safety means that triggers a reduction in the mechanical pressure exerted onto the battery modules when there is a defect in at least one of the battery modules.
US11024892B2

A reusable battery indicator comprises a voltage sensor configured to convert sensed analog characteristics of a battery to digital information; a communication circuit communicatively connected to the voltage sensor; an antenna operatively coupled to the communication circuit; and a connection mechanism having at least a first connector and a second connector that are electrically connected to the voltage sensor, the first connector and the second connector being adapted to be removably connected to a first battery terminal and to a second battery terminal, respectively, thereby completing an electrical circuit between the voltage sensor and the first and second battery terminals when the connection mechanism is coupled to the first battery terminal and to the second battery terminal.
US11024880B2

Disclose are an electrolyte composite for a lithium secondary battery having an improved output; a cathode including a protective film on its surface; and a lithium secondary battery comprising the same.
US11024879B2

According to one embodiment, a secondary battery is provided. The secondary battery includes a positive electrode, a negative electrode, and an aqueous electrolyte containing alkali metal ions. The aqueous electrolyte contains an organic compound containing a carboxyl group or carboxylate group and a hydroxyl group. The pH of the aqueous electrolyte is 0 or less. The ratio of the weight of the organic compound to the weight of the aqueous electrolyte is within a range of 0.01% by weight to 6.5% by weight. The number of carbon atoms in the organic compound is 5 or more.
US11024878B2

A material that can be used in a wide temperature range is provided. A graphene compound includes graphene or graphene oxide and a substituted or unsubstituted chain group, the chain group includes two or more ether bonds, and the chain group is bonded to the above graphene or graphene oxide through a Si atom. Alternatively, a method for forming a graphene compound includes a first step and a second step after the first step. In the first step, graphene oxide and a base are stirred under a nitrogen stream. In the second step, the mixture is cooled to room temperature, a silylating agent that has a group having two or more ether bonds is introduced into the mixture, and the obtained mixture is stirred. The base is butylamine, pentylamine, hexylamine, diethylamine, dipropylamine, dibutylamine, triethylamine, tripropylamine, or pyridine.
US11024876B2

A composite membrane that is suitable for use in an electrochemical cell, an electrochemical cell including the composite membrane, and a method of making the composite membrane. In one embodiment, the composite membrane includes a porous support and a solid electrolyte. The porous support is a unitary structure made of a polymer that is non-conductive to ions. The porous support is shaped to include a plurality of straight-through pores. The solid electrolyte has alkali ion conductivity and preferably completely fills at least some of the pores of the porous support. A variety of techniques may be used to load the solid electrolyte into the pores. According to one technique, the solid electrolyte is melted and then poured into the pores of the porous support. Upon cooling, the electrolyte re-solidifies, forming a monolithic structure within the pores of the porous support.
US11024872B2

The present disclosure provides a cathode material, a method for preparing the same, a cathode and lithium ion battery having the same. The cathode material includes an active component; and a sodium salt dispersed in the active component.
US11024869B2

A button cell includes a housing, the housing including a cell cup, the cell cup having a flat bottom area, a cell cup casing; an insulator; and an electrode-separator assembly winding disposed within the housing, the electrode-separator assembly winding including a multi-layer assembly that is wound in a spiral shape about an axis, the multi-layer assembly including a positive electrode formed from a first metallic film or mesh coated with a first electrode material, a negative electrode formed from a second metallic film or mesh coated with a second electrode material, and a separator disposed between the positive electrode and the negative electrode. The first metallic film or mesh is bent such that at least a portion extends out of the electrode-separator assembly winding and wherein at least a first part of the portion is not covered with the first electrode material.
US11024860B2

A fuel cell system and a method of controlling the fuel cell system is provided. A fuel cell generates power, and a coolant system provides coolant flow through the stack. A controller is configured to, in response to at least one of an ambient temperature and a coolant temperature being below a threshold value after a vehicle shut down command or event, command the coolant system to circulate coolant through the stack to reduce ice formation in the stack prior to commanding a purge of the fuel cell stack.
US11024857B2

A surface treatment method of a fuel cell separator capable of suppressing temperature unevenness of the fuel cell separator is provided. In the surface treatment method, an antimony-doped tin oxide (ATO) film is formed on a surface of a fuel cell separator (W1) used for a fuel cell. The fuel cell separator (W1) is heated using a high-frequency induction heating method (S1). By spraying solution (L1) including antimony and tin onto the fuel cell separator (W1), the ATO film is caused to be formed on the surface of the fuel cell separator (W1) (S2).
US11024856B2

An electrochemical reaction unit cell including an electrolyte layer containing a solid oxide; a cathode and an anode which face each other in a first direction with the electrolyte layer intervening therebetween; and an intermediate layer disposed between the electrolyte layer and the cathode and containing a first cerium oxide. In the electrochemical reaction unit cell, the cathode includes an active layer containing a strontium-containing perovskite oxide, a second cerium oxide, sulfur, and strontium sulfate and having ion conductivity and electron conductivity, and a grain of the strontium sulfate covers at least a portion of the surface of a grain of the second cerium oxide.
US11024854B2

The present application relates to a current collector, an electrode plate, a battery and usages thereof. The current collector includes at least one conductive layer configured to support an electrode active material layer, and an insulation layer configured to support the at least one conductive layer. The conductive layer has a room temperature film resistance RS satisfying 0.01Ω/□≤RS≤0.15Ω/□. The current collector can significantly increase resistance in short-circuit and reduce current in the short-circuit, and reduce heat generated during the short-circuit and improving safety performance. The heat can be totally absorbed by the battery. Therefore, the resulted temperature rise of the battery is small, the damage to the battery caused by the short circuit can be limited to a “point”, and only a “point break” is formed, without influencing normal operation of the battery in a short time.
US11024851B2

A binder composition for a secondary battery which includes a copolymer binder including at least one unit selected from (A) a unit derived from a vinyl-based monomer, (B) a unit derived from a conjugated diene-based monomer or a conjugated diene-based polymer, (C) a unit derived from a (meth)acrylic acid ester-based monomer, and (D) a unit derived from a water-soluble polymer, wherein the copolymer binder has a wet modulus of 0.02 MPa or more, and a negative electrode for a lithium secondary battery and a lithium secondary battery which include the same.
US11024850B2

A lithium-ion battery includes a cathode comprising a lithium compound and the cathode further includes solid additives based on metal nitrides and/or borates. The solid additives improve the capacity retention of the lithium-ion battery and extend the battery lifetime. The solid additives also reduce the growth in internal resistance of the lithium-ion battery that is known to occur as Li-ion batteries age. The solid additives help stabilize the lithium-ion chemistry to high cell potentials or temperatures.
US11024849B2

Provided is a lithium secondary battery containing an anode, a cathode, a porous separator disposed between the anode and the cathode, an electrolyte, and a lithium ion reservoir disposed between the anode and the porous separator and configured to receive lithium ions from the cathode when the battery is charged and enable the lithium ions to enter the anode in a time-delayed manner, wherein the reservoir comprises a conducting porous framework structure having pores (pore size from 1 nm to 500 μm) and lithium-capturing groups residing in the pores, wherein the lithium-capturing groups are selected from (a) redox forming species that reversibly form a redox pair with a lithium ion; (b) electron-donating groups interspaced between non-electron-donating groups; (c) anions and cations wherein the anions are more mobile than the cations; or (d) chemical reducing groups that partially reduce lithium ions from Li+1 to Li+δ, wherein 0<δ<1.
US11024844B2

An electrochemically active material includes an active phase that includes silicon, and at least one inactive phase having a Scherrer Grain Size of greater than 5 nanometers. Each inactive phase of the material having a Scherrer Grain Size of greater than 5 nanometers has a lattice mismatch to Li15Si4 of greater than 5%.
US11024840B2

Provided is a rechargeable alkali metal-sulfur cell comprising an anode active material layer, a cathode active material layer, a discrete anode-protecting layer disposed between the anode active material layer and the cathode active material layer, and an electrolyte (but no porous separator), wherein the anode-protecting layer has a thickness from 1 nm to 100 μm and comprises an elastomer having a fully recoverable tensile elastic strain from 2% to 1,000% and a lithium ion conductivity from 10−8 S/cm to 5×10−2 S/cm when measure at room temperature. The cathode layer comprises a sulfur-containing material selected from a sulfur-carbon hybrid, sulfur-graphite hybrid, sulfur-graphene hybrid, conducting polymer-sulfur hybrid, metal sulfide, sulfur compound, or a combination thereof. This battery exhibits an excellent combination of high sulfur content, high sulfur utilization efficiency, high energy density, no known dendrite issue, no dead lithium or dead sodium issue, and a long cycle life.
US11024838B2

A production method of a negative electrode active material for non-aqueous electrolyte secondary batteries containing particles of lithium-containing silicon compound includes: preparing particles of silicon compound containing a silicon compound (SiOx: 0.5≤x≤1.6); obtaining particles of lithium-containing silicon compound by making the particle of silicon compound contact with a solution A that contains lithium and has an ether-based solvent as a solvent; and heating the particles of the lithium-containing silicon compound. A production method of a negative electrode active material for non-aqueous electrolyte secondary batteries is capable of increasing battery capacity of the negative electrode active material and capable of improving the first time efficiency and cycle characteristics.
US11024834B2

The present invention relates to an electrode coating apparatus that is capable of adjusting a temperature of electrode slurry. Also, the electrode coating apparatus for applying electrode slurry to an electrode collector includes a storage part storing the electrode slurry, a discharge part discharging the electrode slurry stored in the storage part to the electrode collector, and a heating part heating the discharge part.
US11024828B2

A display device includes a flexible substrate including a display area and a non-display area. The substrate has a first surface and a second surface opposite to the first surface. A first protection film is disposed on the first surface of the substrate. The first protection film is disposed over the display area of the substrate. A second protection film is disposed on the first surface of the substrate. The second protection film is disposed over the non-display area of the substrate. A light transmittance of the first protection film is higher than that of the second protection film.
US11024827B2

Provided is an organic electronic device and a method for manufacturing the same. The organic electronic device can effectively block moisture or oxygen from being introduced from the outside into the organic electronic device. The organic electronic device can secure the lifetime of an organic electronic element and has excellent durability while being applicable to a flexible device.
US11024821B2

One embodiment of the present disclosure provides an organic light-emitting element corresponding to each pixel region. The organic light-emitting element includes a hole transport layer, a first light-emitting layer, a second light-emitting layer, a third light-emitting layer, a fourth light-emitting layer, and an electron transport layer. The first light-emitting layer includes a first dopant corresponding to a first color and a first host. The second light-emitting layer includes a second dopant corresponding to a second color different from the first color and a second host different from the first host. The third light-emitting layer includes the first dopant and the second host, and the fourth light-emitting layer includes the second dopant and the second host.
US11024819B2

Disclosed are a QLED display panel and a preparation method thereof and a display apparatus. The QLED display panel includes: a first and second substrates oppositely disposed; a first electrode, a hole injection layer, a hole transport layer, a quantum dot luminescent layer, an electron transport layer and a second electrode formed between the first and second substrates and disposed sequentially along a direction from the first substrate to the second substrate; and a first ionic coordination compound layer formed on a side facing quantum dot luminescent layer, of hole transport layer. The first ionic coordination compound layer includes a first positive and a first negative ion portions; the first positive ion portion is on a side close to hole transport layer, of first ionic coordination compound layer, and the first negative ion portion is on a side close to quantum dot luminescent layer, of first ionic coordination compound layer.
US11024815B2

The present invention relates to metal complexes and to electronic devices, especially organic electroluminescent devices, comprising these metal complexes, especially as emitters, and in particular monometallic metal complex containing a hexadentate tripodal ligand in which three bidentate sub-ligands coordinate to a metal and the three bidentate sub-ligands, which may be the same or different, are joined via a bridge.
US11024812B2

The present invention provides the compound represented by Formula 1, an organic electric element comprising a first electrode, a second electrode, and an organic material layer formed between the first electrode and the second electrode, and electronic device thereof, and by comprising the compound represented by Formula 1 in the organic material layer, the driving voltage of the organic electronic device can be lowered, and the luminous efficiency and life time of the organic electronic device can be improved.
US11024811B2

A composition of materials including a first compound having a structure according to Formula I
US11024792B2

There is provided a method of selectively patterning a device structure. A hollow shadow wall is formed on a substrate. The hollow shadow wall is formed of a base lying on a surface of the substrate, and one or more side walls connected to the base. The one or more side walls extend away from the surface of the substrate and around the base to define an internal cavity of the hollow shadow wall. A device structure supported by the substrate adjacent to the shadow wall is selectively patterned by using a deposition beam to selectively deposit a layer of deposition material on the device structure. The deposition beam has a non-zero angle of incidence relative to a normal to the surface of the substrate and an orientation in the plane of the substrate's surface, such that the shadow wall prevents deposition on a surface portion of the device structure within a shadow region defined by the shadow wall. The one or more side walls of the hollow shadow wall are removed once the device structure has been selectively patterned, and thereby selectively patterning the device component.
US11024787B2

A second fluid having a higher temperature than a first fluid, which flows in a duct, flows in contact with outside fins. Opposed regions of each power generation module and the duct apply pressure to and in contact with each other. Opposed regions of each power generation module and a corresponding one of a first outside plate and a second outside plate apply pressure to and in contact with each other. The duct is formed from a material having a thermal expansion coefficient larger than the first outside plate and the second outside plate. Additionally, two power generation modules are not necessarily required, and at least one power generation module is provided.
US11024777B2

A light source device includes a mounted substrate which is a multi-layered substrate, a semiconductor light-emitting device which emits a laser beam, a wavelength-converting member which radiates fluorescence by being irradiated with the laser beam emitted from the semiconductor light-emitting device as an excitation light, a state detection circuit, an electric field effect type transistor which adjusts an electric current amount applied to the semiconductor light-emitting device upon receipt of an output from the state detection circuit, and an external connecting member, and the semiconductor light-emitting device, the state detection circuit, the transistor, and the external connecting member are mounted on the single mounted substrate.
US11024776B2

A filling material for a resin composition includes a base material and a coating material coating at least a portion of a surface of a particle of the base material. The base material comprises a first inorganic compound containing a Group II element. The coating material comprises a second inorganic compound containing the Group II element and is different from the first inorganic compound. A method of manufacturing the filling material is provided. A resin composition comprising the filling material, a package, a light-emitting device, and methods of manufacturing them are also provided.
US11024767B2

A system, method and device for use as a reflector for a light emitting diode (LED) are disclosed. The system, method and device include a first layer designed to reflect transverse-electric (TE) radiation emitted by the LED, a second layer designed to block transverse-magnetic (TM) radiation emitted from the LED, and a plurality of ITO layers designed to operate as a transparent conducting oxide layer. The first layer may be a one-dimension (1D) distributed Bragg reflective (DBR) layer. The second layer may be a two-dimension (2D) photonic crystal (PhC), a three-dimension (3D) PhC, and/or a hyperbolic metamaterial (HMM). The 2D PhC may include horizontal cylinder bars, vertical cylinder bars, or both. The system, method and device may include a bottom metal reflector that may be Ag free and may act as a bonding layer.
US11024756B2

An apparatus comprises a transparent substrate (3), at least one sensor (5) for the detection of electromagnetic radiation (31), and for each sensor a corresponding mirror having a reflective surface (11). The reflective surface (11) is shaped so that electro-magnetic radiation (31) incident on the transparent substrate (3) at a specific angle, passing through the transparent substrate (3) and being reflected by the reflective surface (11) is directed towards the sensor (5). The sensor (5) comprises a two dimensional material like graphene and may be a quantum dot functionalised graphene field effect transistor. The present invention enables the incident electromagnetic radiation (31) to be focussed onto the at least one sensor (5) without the use of additional optical components like lenses or microlenses. This may enable focussed images to be obtained by the apparatus.
US11024747B2

An object is to improve reliability of a light-emitting device. A light-emitting device has a driver circuit portion including a transistor for a driver circuit and a pixel portion including a transistor for a pixel over one substrate. The transistor for the driver circuit and the transistor for the pixel are inverted staggered transistors each including an oxide semiconductor layer in contact with part of an oxide insulating layer. In the pixel portion, a color filter layer and a light-emitting element are provided over the oxide insulating layer. In the transistor for the driver circuit, a conductive layer overlapping with a gate electrode layer and the oxide semiconductor layer is provided over the oxide insulating layer. The gate electrode layer, a source electrode layer, and a drain electrode layer are formed using metal conductive films.
US11024739B2

In one example, a fin field effect transistor including a single diffusion break with a multi-layer dummy gate is disclosed. One example of field effect transistor includes a first transistor array comprising a first active gate, a second transistor array comprising a second active gate, and a single diffusion break formed between the first transistor array and the second transistor array, wherein the single diffusion break comprises a dummy gate comprising multiple layers of different materials.
US11024735B2

Some embodiments include an assembly having pillars of semiconductor material arranged in rows extending along a first direction. The rows include spacing regions between the pillars. The rows are spaced from one another by gap regions. Two conductive structures are within each of the gap regions and are spaced apart from one another by a separating region. The separating region has a floor section with an undulating surface that extends across semiconductor segments and insulative segments. The semiconductor segments have upper surfaces which are above upper surfaces of the insulative segments; Transistors include channel regions within the pillars of semiconductor material, and include gates within the conductive structures. Some embodiments include methods for forming integrated circuitry.
US11024734B2

In one embodiment, a method of forming a vertical transistor includes forming a layer comprising a semiconductor material above a substrate, defining three dimensional (3D) structures in the layer, forming a second region in at least one vertical sidewall of each 3D structure, and forming an isolation region between the 3D structures. In another embodiment, an apparatus includes at least one vertical transistor, where the at least one vertical transistor includes: a substrate comprising a semiconductor material, an array of 3D structures above the substrate, and an isolation region positioned between the 3D structures. Each 3D structure includes the semiconductor material. Each 3D structure also includes a first region having a first conductivity type and a second region having a second conductivity type, the second region including a portion of at least one vertical sidewall of the 3D structure.
US11024727B2

The magnetoresistance effect element includes a semiconductor layer, a first ferromagnetic layer and a second ferromagnetic layer. The semiconductor layer has a first region, a second region, and a third region. The first ferromagnetic layer is provided on the first region, the second ferromagnetic layer is provided on the second region, and the third region is sandwiched between the first region and the second region in the first direction. The third region has n-type (or p-type) conductivity, and crystal orientations of the semiconductor material in the direction are substantially the same in the first region, the second region, and the third region. An interatomic distance of the first region in the first direction in an upper surface neighboring region including the upper surface is larger (or smaller) than an interatomic distance of the third region in the first direction in an upper surface neighboring region including the upper surface.
US11024725B2

In a transistor including an oxide semiconductor, a change in electrical characteristics is suppressed and reliability is improved. The transistor includes an oxide semiconductor film over a first insulating film; a second insulating film over the oxide semiconductor film; a metal oxide film over the second insulating film; a gate electrode over the metal oxide film; and a third insulating film over the oxide semiconductor film and the gate electrode. The oxide semiconductor film includes a channel region overlapping with the gate electrode, a source region in contact with the third insulating film, and a drain region in contact with the third insulating film. The source region and the drain region contain one or more of hydrogen, boron, carbon, nitrogen, fluorine, phosphorus, sulfur, chlorine, titanium, and a rare gas.
US11024723B2

A semiconductor includes a substrate, a semiconductor fin, an STI structure, a fin sidewall spacer, and a doped silicon layer. The semiconductor fin extends from the substrate. The STI structure laterally surrounds a lower portion of the semiconductor fin. The fin sidewall spacer extends along a middle portion of the semiconductor fin that is above the lower portion of the semiconductor fin. The doped silicon layer wraps around three sides of an upper portion of the semiconductor fin that is above the middle portion of the semiconductor fin.
US11024693B2

According to an embodiment of the present invention, an electronic device may comprise a housing and a display received in at least a portion of the housing, wherein the display comprises: a flexible substrate; a first light-emitting unit which is disposed on a first area of the substrate, has a first attribute, and includes a plurality of first pixels; and a second light-emitting unit which is disposed on a second area of the substrate, has a second attribute different from the first attribute, and includes a plurality of second pixels. Various other embodiments are also possible.
US11024689B2

A display apparatus includes a substrate, a first thin film transistor on the substrate, the first thin film transistor including an active layer including a source region, a drain region, and a channel region between the source region and the drain region, and a display device on the substrate and electrically connected to the first thin film transistor. The source region, the drain region, and the channel region include a first dopant and a second dopant, the second dopant being different from the first dopant. A concentration of the first dopant in the channel region is less than a concentration of the first dopant in the source region and the drain region.
US11024684B2

A display device can include a substrate including first and second pixel regions; a first electrode in each of the first and second pixel regions; and a bank disposed at a boundary of each of the first and second pixel regions on the first electrode defining a first opening exposing a portion of the first electrode and a second opening within the bank defining a formation area of an emitting layer, the second opening is larger than the first opening, in which an area of the first opening in the first pixel region is smaller than an area of the first opening in the second pixel region, and an area of the second opening in the first pixel region is substantially same as an area of the second opening in the second pixel region.
US11024680B2

The present disclosure relates to a display panel and a method of fabricating the same. An organic light emitting diode (OLED) display panel, comprising: a plurality of touch electrodes configured to sense a touch; touch electrode leads electrically connected to the plurality of touch electrodes; and OLED devices each comprising a cathode and a functional layer having a via-hole; wherein, the plurality of touch electrodes function as cathodes of the OLED devices, and are electrically connected to the touch electrode leads through the via-holes.
US11024671B2

A memory includes: a dielectric fin formed over a substrate; and a pair of memory cells disposed along respective sidewalls of the dielectric fin, each of the pair of memory cells comprising: a first conductor layer; a selector layer; a resistive material layer; and a second conductor layer, wherein the first conductor layer, selector layer, resistive material layer, and second conductor layer each includes upper and lower boundaries, and at least one of the upper and lower boundaries is tilted away from one of the sidewalls of the dielectric fin by an angle.
US11024667B2

A light-emitting device includes an inner light-emitting element having an n-sided polygonal shape (n is an integer of 3 or more) in a plan view with a peak emission wavelength in a range of 490 nm to 570 nm; m (m is an integer of 3 or more) outer light-emitting elements with a peak emission wavelength of 430 nm or greater and less than 490 nm; and a first phosphor with a peak emission wavelength in a range of 580 nm to 680 nm covering the inner light-emitting element and the m outer light-emitting elements. Each of n lateral surfaces of the inner light-emitting element faces a corresponding one of the m outer light-emitting elements in a top view.
US11024663B2

The present technology relates a solid-state imaging element, an electronic apparatus, and a semiconductor device each of which enables deterioration of electrical characteristics in a well region of a semiconductor element formed in a thinned semiconductor substrate to be restrained. A solid-state imaging element as a first aspect of the present technology is a solid-state imaging element constituted by laminating semiconductor substrates in three or more layers, in which of the laminated semiconductor substrates, at least one sheet of the semiconductor substrate is thinned, and an impurity region whose carrier type is the same as that of the thinned semiconductor substrate is formed between a well region and a thinned surface portion in the thinned semiconductor substrate. The present technology can, for example, be applied to a CMOS image sensor.
US11024660B2

A solid-state imaging device according to the present disclosure includes: a semiconductor base; a photoelectric conversion element provided in the semiconductor base; a photoelectric conversion film arranged on a light receiving surface side of the semiconductor base; a contact section to which a signal charge generated in the photoelectric conversion film is read, the contact section being provided in the semiconductor base; a first film member covering the photoelectric conversion element; and a second film member provided on the contact section.
US11024655B2

Provided is a method to manufacture a liquid crystal display device in which a contact hole for the electrical connection of the pixel electrode and one of the source and drain electrode of a transistor and a contact hole for the processing of a semiconductor layer are formed simultaneously. The method contributes to the reduction of a photography step. The transistor includes an oxide semiconductor layer where a channel formation region is formed.
US11024652B2

A flexible display device is discussed. The flexible display device includes a substrate having multiple signal lines arranged on the substrate; a transistor disposed on the substrate, the transistor including a gate electrode, a source electrode, and a drain electrode; and a second electrode disposed to correspond to a first electrode connected to the source electrode or the drain electrode of the transistor, wherein at least one of the multiple signal lines, the gate electrode, the source electrode, the drain electrode, and the second electrode is formed of a conductor having a metal nanowire structure and a polymer substance, the metal nonwire structure being disposed in the polymer substance. Also discussed is a method of manufacturing the flexible display device.
US11024643B2

Some embodiments include an integrated structure having vertically-stacked conductive levels. Upper conductive levels are memory cell levels, and a lower conductive level is a select device level. Conductively-doped semiconductor material is under the select device level. Channel material extends along the memory cell levels and the select device level, and extends into the conductively-doped semiconductor material. A region of the channel material that extends into the conductively-doped semiconductor material is a lower region of the channel material and has a vertical sidewall. Tunneling material, charge-storage material and charge-blocking material extend along the channel material and are between the channel material and the conductive levels. The tunneling material, charge-storage material and charge-blocking material are not along at least a portion of the vertical sidewall of the lower region of the channel material, and the conductively-doped semiconductor material is directly against such portion. Some embodiments include methods of forming integrated structures.
US11024637B2

A semiconductor device includes a semiconductor substrate and a pair of memory device structures. The semiconductor substrate includes a common source/drain region and a pair of individual source/drain regions, in which the common source/drain region is between the individual source/drain regions. The memory device structures each corresponds to one of the individual source/drain regions. Each memory device structure includes a trap storage structure, a control gate, a cap structure, and a word line. The trap storage structure is between the common source/drain region and the corresponding individual source/drain region. The control gate is over the trap storage structure. The cap structure is over the control gate, in which the cap structure comprises a nitride layer over the control gate and an oxide layer over the nitride layer. The word line is over the semiconductor substrate and laterally spaced from the control gate.
US11024636B1

The present invention provides 3D stack NOR devices having increased storage area. In one aspect, a method of forming a memory device includes: forming a memory stack on a wafer having alternating sacrificial word and bit line layers separated by dielectric layers; patterning a channel hole in the stack; recessing the sacrificial word line layers to form divots along opposite sides of the channel hole; selectively forming a floating gate stack in the divots; filling the channel hole and divots to form a channel; patterning the memory stack into a stair case structure; burying the memory stack in a dielectric; replacing the sacrificial word line layers in the memory stack with word line contacts; and replacing the sacrificial bit line layers in the memory stack with bit line contacts. A memory device is also provided.
US11024633B2

A device is disclosed that includes a memory bit cell coupled to a bit line, a word line, a pair of metal islands and a pair of connection metal lines. The word line is electrically coupled to the memory bit cell and is elongated in a first direction. The pair of metal islands are disposed at opposite sides of the word line and are electrically coupled to a power supply. The pair of connection metal lines are elongated in a second direction, and are configured to electrically couple the pair of metal islands to the memory bit cell, respectively. The pair of connection metal lines are separated from the bit line in a layout view. A method of fabricating the device is also provided.
US11024630B2

A memory cell comprises first and second transistors laterally displaced relative one another. A capacitor is above the first and second transistors. The capacitor comprises a container-shape conductive first capacitor node electrically coupled with a first current node of the first transistor, a conductive second capacitor node electrically coupled with a first current node of the second transistor, and a capacitor dielectric material between the first capacitor node and the second capacitor node. The capacitor dielectric material extends across a top of the container-shape first capacitor node. Additional embodiments and aspects, including method, are disclosed.
US11024619B2

A semiconductor manufacturing apparatus that sequentially stacks a plurality of semiconductor chips while aligning the plurality of semiconductor chips on a stage. A condition determinator determines whether an apparatus performing a mounting processing stops during a mounting processing of the plurality of semiconductor chips. An evacuation controller evacuates, when it is determined that the apparatus performing the mounting processing stops, a group of semiconductor chips that has been stacked before the determination. A resuming determinator determines whether to resume the mounting processing after it is determined that the predetermined condition is satisfied. A return controller returns the evacuated group of semiconductor chips to a position before the evacuation and continues the mounting processing when it is determined that the mounting processing is resumed.
US11024617B2

Memory devices having optical I/O interfaces are described herein. In one embodiment, a memory device includes a plurality of memories coupled to a substrate, each memory including one or more photon integrated (PIC) chips for converting electrical signals to/from optical signals. The memory device can further include a plurality of optical fibers, wherein individual ones of the memories are optically coupled to at least one of the optical fibers. The memories can receive/transmit the optical signals over the optical fibers and can be electrically coupled to a power supply/ground via the substrate.
US11024614B2

A method for manufacturing micro LED panel and micro LED panel thereof is disclosed. The method includes defining a plurality of pixel regions on an optical element carrier; providing a first solder portion, or a first solder portion, a second solder portion and a third solder portion in each pixel region; selecting a plurality of process substrates and defining a process area on each process substrate; setting a first process mode, a second process mode and a third process mode, and determining the number of process substrates in the first process mode, the second process mode and the third process mode according to the number of units; then the process area of the process substrate will form a plurality of first micro light emitting chips corresponding to the position of the first soldering portion.
US11024613B2

Lumiphoric material region arrangements are provided for light-emitting diode (LED) packages. Certain aspects relate to arrangements of light-altering materials and lumiphoric material regions for LED packages. Lumiphoric material regions over corresponding LED chips may include increased sizes relative to overall LED package dimensions. Lumiphoric material regions may be arranged to extend to certain peripheral edges of an LED package. Multiple lumiphoric material regions and corresponding LED chips may be arranged in close proximity to one another to provide LED packages with multiple and selectable illumination characteristics. Light-altering materials may be arranged that at least partially define certain peripheral edges of lumiphoric material regions. The light-altering materials may form one or more nonintersecting segments arranged about the lumiphoric material regions. Certain aspects relate to LED packages having one or more of reduced sizes, increased light output, and reduced fabrication steps.
US11024612B2

A display device according to the present invention comprises: a light-transmissive substrate including one surface; a first anode formed on the one surface and extended to be long; a first cathode formed on the one surface and facing the first anode; a second cathode formed on the one surface, facing a second anode, and located between the first anode and the first cathode; the second anode formed on the one surface, facing the second cathode, and located between the second cathode and the first cathode; first light sources provided on the one surface and located between the first anode and the second cathode; second light sources located between the second cathode and the second anode; third light sources located between the second anode and the second cathode; a first connector separated from the one surface while facing the one surface, and connecting the first anode and the second anode; and a second connector separated from the one surface while facing the one surface, and connecting the first cathode and the second cathode.
US11024609B2

Disclosed is a four-in-one mini-LED module, a display screen, and a manufacturing method thereof. The four-in-one mini-LED module comprises a substrate and a plurality of RGB-LED chip sets arranged in an array on the substrate. The RGB-LED chip sets are provided with glue layers. Each RGB-LED chip set comprises an R chip, a G chip and a B chip, each chip has a first electrode and a second electrode, and the first electrode and the second electrode have opposite polarities. The first electrodes of all the chips of the same row are electrically connected, the second electrodes of all the R chips of the same column are electrically connected, the second electrodes of all the G chips of the same column are electrically connected, and the second electrodes of all the B chips of the same column are electrically connected.
US11024606B2

A semiconductor device includes n semiconductor chips stacked via electrical contacting means in the silicon substrate thickness direction, n being an integer larger than 2, a side face of the stacked semiconductor device in the substrate thickness direction being covered by a non-conductive layer. The shape of the side face with respect to a plan view of the stacked semiconductor device may be one of curved, convex, concave or circular.
US11024605B2

In an embodiment, a device includes: a bottom integrated circuit die having a first front side and a first back side; a top integrated circuit die having a second front side and a second back side, the second back side being bonded to the first front side, the top integrated circuit die being free from through substrate vias (TSVs); a dielectric layer surrounding the top integrated circuit die, the dielectric layer being disposed on the first front side, the dielectric layer and the bottom integrated circuit die being laterally coterminous; and a through via extending through the dielectric layer, the through via being electrically coupled to the bottom integrated circuit die, surfaces of the through via, the dielectric layer, and the top integrated circuit die being planar.
US11024594B2

According to an exemplary embodiment, a substrate having a first area and a second area is provided. The substrate includes a plurality of pads. Each of the pads has a pad size. The pad size in the first area is larger than the pad size in the second area.
US11024590B2

Systems and methods for placing capacitors between IC bumps and BGA balls are described. In one embodiment, the method may include placing a ball grid array (BGA) package or integrated circuit (IC) package on a printed circuit board (PCB) of an electronic device, and placing a capacitor between a first BGA ball and a second BGA ball of the BGA package and/or placing a capacitor between a first IC bump and a second IC bump of the IC package to maintain impedance of a power delivery network (PDN) of the BGA package or IC package below a target impedance.
US11024587B2

The present invention relates to a self-destructible apparatus and method. The apparatus includes a self-destructible operation unit composed of a plurality of cavity cells; a variable voltage/current supply unit configured to supply a variable voltage and current to the self-destructible operation unit; an identification (ID) matching unit configured to compare an ID input from an external source to a digital physical unclonable function (PUF) ID assigned to each of the cavity cells to determine whether the two IDs match each other so that power of the variable voltage/current supply unit is supplied to only a desired cavity cell among the plurality of cavity cells; a digital PUF ID generation unit configured to generate the digital PUF ID input to the ID matching unit; and an external ID input unit configured to generate the ID input to the ID matching unit.
US11024580B2

Methods and devices are described herein for random cut patterning. A first metal line and a second metal line are formed within a cell of a substrate and extend in a vertical direction. A third metal line and a fourth metal line are formed within the cell and are perpendicular to the first metal line and the second metal line, respectively. A first circular region at one end of the first metal line is formed using a first patterning technique and a second circular region at one end of the second metal line is formed using a second patterning technique. The first circular region is laterally extended using a second patterning technique to form the third metal line and the second circular region is laterally extended using the second patterning technique to form the fourth metal line.
US11024571B2

A coil built-in multilayer substrate includes a multilayer substrate, a coil, interlayer connection conductors, and gaps. The multilayer substrate includes a magnetic layer, a component-mounting land conductor provided on a first principal surface, and a terminal conductor provided on a second principal surface. The coil is provided in the magnetic layer and includes an axis extending in a direction perpendicular or substantially perpendicular to the first and second principal surfaces. The interlayer connection conductors are provided in the magnetic layer in a region inside the spiral coil. Gaps penetrate lateral surfaces of the interlayer connection conductors.
US11024566B2

A first semiconductor chip and a second semiconductor chip are stacked such that a first inductor and a second inductor face each other. An insulating sheet is disposed between the first semiconductor chip and the second semiconductor chip. The sealing member seals the first semiconductor chip, the second semiconductor chip, and the insulating sheet. The sealing member is disposed both between the insulating sheet and the first semiconductor chip and between the insulating sheet and the second semiconductor chip.
US11024564B2

A packaged electronic device includes a stacked configuration of a first semiconductor die in a first recess in a first side of a first conductive plate, a second semiconductor die in a second recess in a first side of a second conductive plate, a third conductive plate electrically coupled to a second side of the second semiconductor die, and a package structure that encloses the first semiconductor die, and the second semiconductor die, where the package structure includes a side that exposes a portion of a second side of the first conductive plate.
US11024560B2

A semiconductor structure including a substrate, a dielectric layer, a conductive via, and a landing pad is provided. The dielectric layer is positioned on the substrate. The conductive via penetrates from a lower surface of the substrate to an upper surface of the dielectric layer. The landing pad is embedded in the conductive via.
US11024559B2

Semiconductor packages with electromagnetic interference (EMI) shielding structures and a method of manufacture therefor is disclosed. In some aspects, a shielding structure can serve as an enclosure formed by conductive material or by a mesh of such material that can be used to block electric fields emanating from one or more electronic components enclosed by the shielding structure at a global package level or local and/or compartment package level for semiconductor packages. In one embodiment, wire and/or ribbon bonding can be used to fabricate the shielding structure. For example, one or more wire and/or ribbon bonds can go from a connecting ground pad on one side of the package to a connecting ground pad on the other side of the package. This can be repeated multiple times at a pre-determined pitch necessary to meet the electrical requirements for shielding, e.g. less than or equal to approximately one half the wavelength of radiation generated by the electronic components being shielded.
US11024551B1

A method is presented for forming a multi-level of interconnects underneath a complementary metal oxide semiconductor (CMOS) device. The method includes forming a stack including alternating layers of a semiconductor material and a first conductive material, patterning vias in the stack to define multiple stacks, depositing a first block material within each of the vias, forming a series of first block materials within a first via, forming a series of second block materials within a second via, the first and second vias being on opposed ends of a stack of the multiple stacks, and performing vertical metallization between the first block material and the series of first block materials in the first via, and between the first block material and the series of second block materials in the second via.
US11024546B2

Vertical field effect transistors (FETs) with minimum pitch and methods of manufacture are disclosed. The structure includes at least one vertical fin structure and gate material contacting with the at least one vertical fin structure. The structure further includes metal material in electrical contact with the ends of the at least one vertical fin.
US11024542B2

A manufacturing method of a device chip includes a die bonding resin providing step of supplying a die bonding resin in a liquid state to a back surface side of a wafer with device chips formed on a front surface thereof and solidifying the die bonding resin, a water-soluble resin providing step of covering the die bonding resin with a water-soluble resin, a laser processing step of applying a laser beam from the back surface side of the wafer to remove the die bonding resin and the water-soluble resin, an etching step of etching an exposed portion on the back surface side of the wafer to divide the wafer, and a water-soluble resin removing step of supplying water on the back surface side of the wafer to remove the water-soluble resin.
US11024541B2

A process for molding a back side wafer singulation guide is disclosed. Structures for heat mitigation include an overmold formed over a contact surface of a device layer of a wafer, covering bump structures. The overmold and bump structures are thinned and planarized, and the overmold provides an underfill to increase interconnect reliability of a semiconductor die in a flip chip bonded package. However, visibility of singulation guides on the contact surface is obstructed. A channel is formed extending through the device layer and into the handle layer, and is filled with the overmold. The handle layer is replaced with a thermally-conductive molding layer formed on the back side for dissipating heat generated by semiconductor devices. The thermally-conductive handle is thinned until the overmold in the channel beneath the device layer is exposed. The exposed overmold provides a visible back side singulation guide for singulating the wafer.
US11024537B2

Methods and apparatus for forming an interconnect, including: depositing a first barrier layer upon a top surface of a via and a top surface of a trench; filling the via with a first metal, wherein the first metal completely fills the via and forms a metal layer within the trench; etching the metal layer within the trench to expose dielectric sidewalls of the trench, a top surface of the via, and a dielectric bottom of the trench; depositing a second barrier layer upon the dielectric sidewalls, top surface of the via, and the dielectric bottom of the trench; and filling the trench with a second metal different than the first metal.
US11024528B2

An electrostatic chuck device comprising: a placing table having a placing surface on which a plate-shaped sample is placed, an electrostatic attraction electrode, which is located on a lower side of the placing table in such a manner that the electrode is located on a surface side opposite to the placing surface of the placing table, a base part on which at least the placing table and the electrostatic attraction electrode are mounted, a focus ring which surrounds the placing table wherein the focus ring is a continuous ring or is divided into two or more portions, and a lift pin which is movable in an up-down direction and raises the entirety of or at least a part of the focus ring from the base part.
US11024527B2

The present disclosure provides various apparatus and methods for novel cleanspace fabricator designs. In some examples, a cleanspace fabricator may be comprised of vertically stacked tools wherein the product and the processing tools are conveyed through the cleanspace. The fabricator may comprise a processor performing cognitive computing algorithms. In some examples, the processor may be located at a remote location and communication with the cleanspace fabricator. Product may be comprised of or processed upon substrates in some examples. In other examples product may be comprised of materials contained within vessels. In some examples the product within vessels may be in liquid or powder form.
US11024523B2

A substrate processing apparatus, comprising a substrate support (32) provided with a support surface (34) for supporting a substrate or a substrate carrier (24) thereon and a support heater (50) constructed and arranged to heat the support surface (34). The apparatus comprises a heat shield constructed and arranged to cover and shield the substrate support (32) when no substrate or substrate carrier (24) is on the support surface.
US11024520B2

The substrate processing apparatus includes a processing chamber including an outer chamber configured to hold a processing liquid and an inner chamber capable of surrounding the substrate held by the substrate holder; a liquid delivery pipe having one end coupled to a bottom of the inner chamber and other end coupled to the outer chamber; a pump configured to suck the processing liquid from the inner chamber through the liquid delivery pipe and to deliver the processing liquid to the outer chamber through the liquid delivery pipe; and a guide cover having a through-hole in which the substrate holder can be inserted. The guide cover is located below an upper end of the outer chamber and above the inner chamber.
US11024517B2

Disclosed are an apparatus and a method for liquid-treating a substrate. An apparatus for treating a substrate includes a liquid treatment chamber that supplies a liquid onto the substrate to liquid-treat the substrate, a drying chamber that removes the remained liquid on the substrate, and a transfer unit that transfers the substrate between the liquid treatment chamber and the drying chamber, wherein the transfer unit includes a hand that supports the substrate, and a weight measuring unit that measures a weight of the remained liquid on the substrate. A weight of a remained liquid on a substrate may be measured by measuring a weight of the substrate while the substrate is transferred.
US11024516B2

An object is to provide a display device with excellent display characteristics, where a pixel circuit and a driver circuit provided over one substrate are formed using transistors which have different structures corresponding to characteristics of the respective circuits. The driver circuit portion includes a driver circuit transistor in which a gate electrode layer, a source electrode layer, and a drain electrode layer are formed using a metal film, and a channel layer is formed using an oxide semiconductor. The pixel portion includes a pixel transistor in which a gate electrode layer, a source electrode layer, and a drain electrode layer are formed using an oxide conductor, and a semiconductor layer is formed using an oxide semiconductor. The pixel transistor is formed using a light-transmitting material, and thus, a display device with higher aperture ratio can be manufactured.
US11024512B1

Enhanced compositions and methods are provided for selectively etching silicon wafers, which is particularly useful in the context of silicon wafer manufacturing and processing applications. Optionally, a formulation is provided which selectively etches silicon dioxide in preference to aluminum oxide. Optionally, a formulation and method are provided that is substantially non-aqueous.
US11024504B2

A semiconductor device includes a substrate, a gate structure over the substrate, gate spacers on opposite sidewalls of the gate structure, an inhibitor residue over gate structure and between the gate spacers, and source/drain structures on opposite sides of the gate structure. The inhibitor residue lines a sidewall of one of the gate spacers.
US11024502B2

A method for forming a semiconductor device includes forming a mask layer with a first implantation window on a semiconductor substrate and implanting dopants with a first implantation energy into the semiconductor substrate through the first implantation window to form a first portion of a doping region of the semiconductor device. The mask layer is adapted to form a second implantation window of the mask layer. Further, dopants are implanted with a second implantation energy into the semiconductor substrate through the second implantation window. The second implantation energy differs from the first implantation energy and a lateral dimension of the first implantation window differs from a lateral dimension of the second implantation window.
US11024496B2

A gas transfer system for transferring gas into an analytical instrument for isotope ratio analysis comprises a capillary for delivering sample and/or reference gas from a gas source, a first connector for connecting the capillary to the gas source, a second connector for connecting the capillary to the analytical instrument, a crimping device, wherein the internal surface of the capillary comprises a coating material to prevent or minimize adsorption of water to the surface. Also provided is a device for regulating gas flow in a gas inlet system of an analytical instrument, comprising a body member having an internal gas flow channel, and a clamping member for attachment to the body member such that when the clamping member is tightened onto the body member, the internal gas flow channel is adjustably and reversibly crimped, to adjust gas flow therethrough.
US11024473B2

An add on device assembly for surge arresters used in substation, distribution and transmission applications that provides a means to electrically and mechanically disconnect a surge arrester at the end of life, such that it leaves a physical dimension between electrodes that is able to withstand normal system voltage and at the same time continue to provide surge protection until the arrester is replaced. The assembly contains a spring locking assembly that will lock a line spacing buss in an open position post isolator operation. The resultant gap is set to provide sufficient air insulation for system voltage and at the same sufficient surge protection for the system Basic Insulation Level.
US11024466B2

A self-charging supercapacitor is provided which includes a supercapacitor first electrode, a supercapacitor second electrode, a first electrolyte, and a metal electrode. The supercapacitor first electrode and the supercapacitor second electrode are parallel to and spaced apart front each other. The metal electrode and the supercapacitor second electrode form an Ohmic contact, the metal electrode is spaced apart from and opposite to the supercapacitor first electrode.
US11024462B2

A method of manufacturing a ceramic electronic component includes forming a dielectric layer including a plurality of ceramic nanosheets on a first electrode, treating the dielectric layer with an acid, and forming a second electrode on the dielectric layer, a ceramic electronic component, and an electronic device.
US11024461B2

A multi-layer ceramic electronic component includes: a ceramic body including a main surface facing in a first direction, an end surface facing in a second direction orthogonal to the first direction, a side surface facing in a third direction orthogonal to the first and second directions, and internal electrodes laminated in the first direction; and an external electrode formed on a surface of the ceramic body, the external electrode including a base film including an end-surface-covering portion that covers the end surface, and a main-surface-covering portion that covers part of the main surface continuously from the end-surface-covering portion, an electrically conductive thin film including a base-covering portion that covers the main-surface-covering portion, and a ceramic-body-covering portion that extends from the base-covering portion in the second direction and covers part of the main surface, and a plating film that covers the electrically conductive thin film and the base film.
US11024455B2

One object of the present invention is to provide a compact coil component with superior characteristics. An electronic component according one embodiment includes an insulator and a coil portion. The insulator is formed of a non-magnetic material. The insulator includes a width direction in a first axial direction, a length direction in a second axial direction, and a height direction in a third axial direction. The coil portion includes a circumference section. The circumference section is wound around the first axial direction. The coil portion is arranged inside the insulator. The first ratio of a height to a length of the insulator is 1.5 times or less of a second ratio of a height between first inner peripheral portions of the circumference section along the third axial direction with respect to a length between second inner peripheral portions of the circumference section along the second axial direction.
US11024450B2

Method for controlling heat transfer between two objects. In one embodiment, the method includes providing a first current through a first electromagnet disposed about a container holding magnetorheological fluid to generate a first magnetic field such that particles in the magnetorheological fluid align with the first magnetic field to conductively couple a first conductive element to a second conductive element; and providing a second current through a second electromagnet disposed perpendicular to the first electromagnet to generate a second magnetic field perpendicular to the first magnetic field such that the particles in the magnetorheological fluid align with the second magnetic field to conductively uncouple the first conductive member from the second conductive member.
US11024438B2

A chalcogen-containing compound of the following Chemical Formula 1 which exhibits excellent phase stability even at a low temperature, particularly at a temperature corresponding to an operating temperature of a thermoelectric element, and also exhibits a significantly superior power factor and thermoelectric performance index due to its excellent electrical conductivity and low thermal conductivity caused by its unique crystal lattice structure, a method for preparing the same, and a thermoelectric element including the same. [Chemical Formula 1]—V1-2xSn4Bi2-xAg3xSe7, wherein V is vacancy and 0
US11024437B2

Apparatuses and methods for producing neutrons for applications such as boron neutron capture therapy (BNCT) are described. An apparatus can include a rotary fixture with a coolant inlet and a coolant outlet, and a plurality of neutron-producing segments. Each neutron-producing segment of the plurality of neutron-producing segments is removably coupled to the rotary fixture, and includes a substrate having a coolant channel circuit defined therein and a solid neutron source layer disposed thereon. The coolant channel circuits are in fluid communication with the coolant inlet and the coolant outlet.
US11024422B2

A computer system for generating a diagnostic tool by applying artificial intelligence to an instrument for diagnosis of a disorder, such as autism. For autism, the instrument can be a caregiver-directed set of questions designed for an autism classification tool or an observation of the subject in a video, video conference, or in person and associated set of questions about behavior that are designed for use in a separate autism classification tool. The computer system can have one or more processors and memory to store one or more computer programs having instructions for generating a highly statistically accurate set of diagnostic items selected from the instrument, which are tested against a first test using a technique using artificial intelligence and a second test against an independent source. Also, a computer implemented method and a non-transitory computer-readable storage medium are disclosed.
US11024415B2

Methods and systems for automatically triaging an image study of a patient generated as part of a medical imaging procedure. One system includes a computing device including an electronic processor. The electronic processor is configured to receive, from a cognitive system applying a model developed using computer vision and machine learning techniques based on deep learning methodology to classify image studies, a classification assigned to the image study using the model, and automatically generating a worklist based on the classification assigned to the image study using the model, the worklist prioritizing a plurality of tasks for treating the patient.
US11024414B2

A system and method for converting static/still medical images of a particular patient into dynamic and interactive images interacting with medical tools including medical devices by coupling a model of tissue dynamics and tool characteristics to the patient specific imagery for simulating a medical procedure in an accurate and dynamic manner by coupling a model of tissue dynamics to patient specific imagery for simulating cerebral aneurysm clipping surgery.
US11024396B2

Channel information and channel conditions determined by an Offline Tracking process are used to determine whether or not an adjustment to the read reference voltage can be avoided altogether without detrimentally affecting performance, or, alternatively, to determine a precision with which a read reference voltage adjustment should be made. If it is determined based on the channel conditions that a read reference voltage adjustment can be avoided altogether, read performance is improved by reducing the probability that a read reference voltage adjustment needs to be made during normal read operations. If it is determined based on the channel conditions that a read reference voltage adjustment needs to be made with a particular precision, the read reference voltage is so adjusted. This latter approach is advantageous in that relatively fewer adjustments will be made during normal read operations.
US11024381B2

A memory architecture includes: a plurality of cell arrays each of which comprises a plurality of bit cells, wherein each of bit cells of the plurality of cell arrays uses a respective variable resistance dielectric layer to transition between first and second logic states; and a control logic circuit, coupled to the plurality of cell arrays, and configured to cause a first information bit to be written into respective bit cells of a pair of cell arrays as an original logic state of the first information bit and a logically complementary logic state of the first information bit, wherein the respective variable resistance dielectric layers are formed by using a same recipe of deposition equipment and have different diameters.
US11024371B2

When programming a memory device which includes a plurality of memory cells coupled to a plurality of word lines and a plurality of bit lines, coarse programming is perform on two adjacent first and second word lines among the plurality of word lines. Next, an unselected bit line among the plurality of bit lines is pre-charged during a first period after performing the coarse programming on the first word line and the second word line. Also, the channel between the unselected bit line and the second word line is turned on at the start of the first period and turned off prior to the end of the first period. Then, fine programming is performed on the first word line during a second period subsequent to the first period.
US11024364B2

There are provided a sense amplifier for sensing a multilevel cell and a memory device including the same. The sense amplifier is configured to sense the most significant bit (MSB) and the least significant bit (LSB) of 2-bit data a cell voltage stored in a memory cell as the most significant bit (MSB) and the least significant bit (LSB) of 2-bit data. The sense amplifier senses the MSB of the 2-bit data in a state in which a bit line is electrically disconnected from a holding bit line of the sense amplifier and senses the LSB of the 2-bit data in a state in which the cell bit line is electrically connected to the holding bit line. The sense amplifier is configured to equalize a pair of bit lines of the sense amplifier before sensing the MSB and the LSB of the 2-bit data. The sense amplifier is configured to restore to the memory cell the cell voltage corresponding to the sensed MSB and LSB of the 2-bit data.
US11024359B2

A memory device may include a cell array and a cycle calculating circuit. The cycle calculating circuit may calculate an operating cycle of a refresh operation to be performed at the cell array, based on an operating temperature of the memory device. In response to the operating temperature being lower than a first temperature, the cycle calculating circuit may be configured to calculate the operating cycle by integrating one or more slope values of a second slope value to an nth slope value that are arranged from a highest temperature to a lowest temperature. The second slope value may correspond to a second temperature, the nth slope value may correspond to an nth temperature, n may be a natural number of 2 or more, and a number of the one or more slope values may be based on the operating temperature.
US11024357B1

A nonvolatile memory cell resistance change type nonvolatile memory cell configured to store information by changing an electrical resistance according to application of electrical stress is provided and a nonvolatile memory device including the nonvolatile memory cell is provided. The resistance change type nonvolatile memory cell includes a resistance change material layer including a resistance change material; a ferroelectric layer on a first side of the resistance change material layer, the ferroelectric layer configured to change an electrical resistance of the resistance change material layer according to a polarization direction and polarization size of a ferroelectric therein; a first electrode on the ferroelectric layer and configured to control the polarization direction and the polarization size of the ferroelectric based on an applied voltage; and a second electrode and a third electrode on the resistance change material layer with the first electrode therebetween.
US11024353B1

Aspects of a storage device including a controller, a calibration resistor and a die having an output driver and a calibration circuit are provided, which allow for an output impedance of the output driver to be calibrated to a lower impedance than a minimum required for reading data across PVT variations of the die at maximum loading of the controller. To check whether slow corners may operate using the lower impedance, the controller determines whether the output impedance of the output driver can be calibrated to the lower impedance at a maximum temperature and minimum voltage applied to the die, or whether a calibration code generated from the calibration circuit exceeds a threshold at a nominal temperature and voltage applied to the die. Thus, slow corners are screened out from lower impedance use, while faster devices are designed with a smaller calibration resistance to benefit from increased memory and speed.
US11024343B2

The present disclosure relates to electronic devices that include a composition that actively generates a gaseous oxidizing agent component within the interior gas space of the electronic device. The present disclosure also relates to electronic devices that include a container that includes a gaseous oxidizing agent component in a manner that the gaseous oxidizing component can transfer from the container to the interior gas space of the electronic device. The present disclosure also involves related methods.
US11024342B2

A digital image processing apparatus and a method of controlling the same. The digital image processing apparatus includes: a display controller for displaying first content on a display unit; and an image generator for generating second content based on a photographing signal input, which may be from a user, and third content related to the second content.
US11024340B2

Disclosed herein are a number of example embodiments for an improved audio sample playback unit. For example, multi-dimensional mapping of triggers to audio samples is disclosed. Also disclosed is low latency retrieval and playback of audio samples via pre-loading of sample heads into high speed memory. Furthermore, disclosed herein is a multi-threaded control operation for generating audio frames in response to trigger inputs, as well as the use of multiple pipes from which audio data can be generated. Further still, an example embodiment provides for multi-level control of audio properties, including voice-specific controls, pipe-specific controls, and global controls.
US11024339B2

A method is provided for acquiring and transmitting biometric data (e.g., vital signs) of a user, where the data is analyzed to determine whether the user is suffering from a viral infection, such as COVID-19. The method includes using a pulse oximeter to acquire at least pulse and blood oxygen saturation percentage, which is transmitted wirelessly to a smartphone. To ensure that the data is accurate, an accelerometer within the smartphone is used to measure movement of the smartphone and/or the user. Once accurate data is acquired, it is uploaded to the cloud (or host), where the data is used (alone or together with other vital signs) to determine whether the user is suffering from (or likely to suffer from) a viral infection, such as COVID-19. Depending on the specific requirements, the data, changes thereto, and/or the determination can be used to alert medical staff and take corresponding actions.
US11024334B2

A magnetic recording medium includes a substrate, an underlayer, and a magnetic layer that are arranged in this order. The magnetic layer has a granular structure including magnetic grains having a L10 crystal structure, and grain boundary parts having a volume fraction in a range of 25 volume % to 50 volume %. The magnetic grains have a c-axis orientation with respect to the substrate. The grain boundary parts include a material having a lattice constant in a range of 0.30 nm to 0.36 nm, or in a range of 0.60 nm to 0.72 nm.
US11024331B2

Systems and methods for optimizing voice detection via a network microphone device are disclosed herein. In one example, individual microphones of a network microphone device detect sound. The sound data is captured in a first buffer and analyzed to detect a trigger event. Metadata associated with the sound data is captured in a second buffer and provided to at least one network device to determine at least one characteristic of the detected sound based on the metadata. The network device provides a response that includes an instruction, based on the determined characteristic, to modify at least one performance parameter of the NMD. The NMD then modifies the at least one performance parameter based on the instruction.
US11024327B2

A speech model constructed from reference speech samples, which were produced by a subject at a first time while a physiological state of the subject was known, is obtained. The model includes (i) acoustic states exhibited in the reference speech samples and associated with respective local distance functions, and (ii) allowed transitions between the acoustic states. A test speech sample that was produced by the subject at a second time, while the physiological state of the subject was unknown, is received. Test-sample feature vectors that quantify acoustic features of different respective portions of the test speech sample are computed. Based on the local distance functions and the allowed transitions, the test speech sample is mapped to a minimum-distance sequence of the acoustic states. In response thereto, an output indicating the physiological state of the subject at the second time is generated. Other embodiments are also described.
US11024325B1

A voice controlled assistant has a housing to hold one or more microphones, one or more speakers, and various computing components. The housing has an elongated cylindrical body extending along a center axis between a base end and a top end. The microphone(s) are mounted in the top end and the speaker(s) are mounted proximal to the base end. A control knob is rotatably mounted to the top end of the housing to rotate about the center axis. A light indicator is arranged on the control knob to exhibit various appearance states to provide visual feedback with respect to the one or more functions being performed by the assistant. In one case, the light indicator is used to uniquely identify participants involved in a call.
US11024321B2

Methods, systems, and apparatus, including computer programs encoded on computer storage media, for coding speech using neural networks. One of the methods includes obtaining a bitstream of parametric coder parameters characterizing spoken speech; generating, from the parametric coder parameters, a conditioning sequence; generating a reconstruction of the spoken speech that includes a respective speech sample at each of a plurality of decoder time steps, comprising, at each decoder time step: processing a current reconstruction sequence using an auto-regressive generative neural network, wherein the auto-regressive generative neural network is configured to process the current reconstruction to compute a score distribution over possible speech sample values, and wherein the processing comprises conditioning the auto-regressive generative neural network on at least a portion of the conditioning sequence; and sampling a speech sample from the possible speech sample values.
US11024317B2

This application relates to microphone authentication apparatus for verifying whether or not an audio signal originated at a microphone (101, 102). The microphone authentication apparatus (300) has a comparison block (301) configured to receive a first signal (A*) indicative of one or more spectral parameters of at least part of an audio signal to be verified, and compare the one or more spectral parameters to one or more predetermined characteristic microphone parameters relating to a characteristic resonance associated with an acoustic port of a microphone. The first signal (A*) may be an audio signal (A) and the microphone authentication apparatus may have a feature extract module (303) for determining the spectral parameters. Based on the comparison determination block (304) may whether the audio signal originated from a microphone and may send a verification signal (VMIC) to a voice biometric module 111.
US11024313B2

Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for hotword detection on multiple devices are disclosed. In one aspect, a method includes the actions of receiving, by a computing device, audio data that corresponds to an utterance. The actions further include determining a likelihood that the utterance includes a hotword. The actions further include determining a loudness score for the audio data. The actions further include based on the loudness score, determining an amount of delay time. The actions further include, after the amount of delay time has elapsed, transmitting a signal that indicates that the computing device will initiate speech recognition processing on the audio data.
US11024304B1

In some aspects, disclosed herein is a device that stores one or more pre-recorded or dynamically generated voice commands that are capable of activating a virtual assistant via a voice-based user interface and causing the virtual assistant to perform a specific task. The device may be activated manually, e.g., by pushing a button. In some aspects, the device relieves a user of a virtual assistant of the need to speak a specific command in order to cause a virtual assistant to perform a specific task.
US11024303B1

Techniques for communicating announcements across devices are described. A system performs speech processing on input audio data to determine a command to output an announcement. The system determines devices outputting indicators representing users are proximate thereto. The system generates output audio data corresponding to at least a portion of the input audio data corresponding to announcement content. The system sends the output audio data to the devices along with instructions to output audio corresponding to the output audio data.
US11024299B1

Systems, methods, and computer-readable media are disclosed for providing privacy and intent preserving redactions of text derived from utterance data. Certain embodiments provide new techniques for using MadLib-style replacements to replace one or more terms or phrases in a text string. Example methods may include receiving utterance data and determining a public portion and a private portion of the utterance data. Certain methods include determining a cluster of candidates having a same semantic context as the private portion and identifying from within the cluster of candidates a first candidate. Certain methods include determining a redacted utterance comprising the public portion of the utterance and the first candidate. Certain methods include providing the redacted utterance to downstream systems and processes.
US11024298B2

Methods and apparatus for performing speech recognition using a garbage model. The method comprises receiving audio comprising speech and processing at least some of the speech using a garbage model to produce a garbage speech recognition result. The garbage model includes a plurality of sub-words, each of which corresponds to a possible combination of phonemes in a particular language.
US11024290B2

Techniques for capturing spoken user inputs while a device is prevented from capturing such spoken user inputs are described. When a first device becomes incapable of capturing spoken user inputs intended for a system, a second device, for capturing such spoken user inputs, may be identified. The second device may be identified based on the second device being connected to a same vehicle computing system as the first device. The second device may be enabled to capture spoken user inputs, intended for the system, until the first device is again able to capture such spoken user inputs.
US11024286B2

In order to solve a conventional problem that, after a series of dialog between a user and a spoken dialog device has progressed to some extent, that user or another user cannot see or recognize a previous dialog status, a cross-lingual spoken dialog system is provided wherein, in a case in which an instruction from a user terminal is received by a pairing server, dialog information stored in a storage medium is transmitted to the user terminal. Accordingly, even after a series of dialog between a user and the spoken dialog device has progressed to some extent, that user or another user can see or recognize a previous dialog status.
US11024283B2

Systems and methods for noise cancelation in a listening area include functionality that activates a microphone of the remote control device of a home entertainment system or a microphone of another mobile device to collect a baseline white noise profile of a user's media content listening area, such as the user's family room, living room or other TV viewing space. This baseline white noise profile may be used by the user's set-top box (STB) or other receiving device to generate the corresponding noise canceling audio signal to create a noise-canceling effect and a more immersive and enjoyable listening experience for the user. A plurality of audio data samples from which to select, each representing a different baseline profile of ambient white noise associated with the media content listening area, may be generated and used for different devices that generate white noise.
US11024282B2

An apparatus receives a background audio signal from an earpiece microphone. The earpiece microphone is configured to convert sound from a surrounding environment into the background audio signal. The apparatus outputs, to at least one speaker, a primary audio signal with an altered version of the background audio signal. The altered version is selectable, responsive to control by a user of a user interface, between an amount of active noise cancelation of the sound and an amount of reproduction of the sound. One example embodiment is a headset with microphones and speakers for the respective inputs and outputs.
US11024280B2

A signal processing apparatus includes a signal processor configured to: generate a first noise reduction signal using an adaptive filter based on a signal output from a first input apparatus, and cause the generated first noise reduction signal to be output by a first output apparatus; and generate a second noise reduction signal using a feedback filter based on a signal output from a second input apparatus, and cause the generated second noise reduction signal to be output by a second output apparatus. The feedback filter has a fixed feedback coefficient. The first input apparatus is located at a first noise-cancellation target location in an environment, and the second input apparatus is located at a second noise-cancellation target location in the environment, which may be different from the first noise-cancellation target location.
US11024279B2

A noise cancelation system for an unmanned aerial vehicle may have an audio capture module, a metadata module and a filter. The audio capture module may be configured to receive an audio signal captured from a microphone, e.g., on a camera. The metadata module may be configured to retrieve noise information associated with noise generating components operating on the unmanned aerial vehicle (UAV). The filter may be configured to receive the audio signal and noise information from the audio capture module. The filter also may be configured to retrieve a baseline profile from a database based on the noise information. The baseline profile includes noise parameter to filter out audio frequencies from the audio signal corresponding to the noise generating component. The filter may generate a filtered audio signal for output.
US11024277B2

An acoustic barrier includes a sound absorption material; a coating of a cured aqueous composition, the aqueous composition including an aqueous dispersion of a co-polymer comprising of monomers of two or more of an acrylate, a cyano-substituted acrylate, or styrenic; and an acrylic dispersion.
US11024276B1

A method of creating AI-composed music having a style that reflects and/or augments the personal style of a user includes selecting and/or composing one or more seed compositions; applying variation and/or mash-up methods to the seed compositions to create training data; training an AI using the training data; and causing the AI to compose novel musical compositions. The variation methods can include methods described in the inventor's previous patents. A novel method of creating mash-ups is described herein. Variation and mash-up methods can further be applied to the A compositions. The AI compositions, and/or variations and/or mash-ups thereof, can be added to the training data for re-training of the AI. The disclosed mash-up method includes parsing the seed compositions into sequences of elements, which can be of equal length, beat-matching the seed compositions to make corresponding elements of equal beat length, and combining the elements to form a mash-up.
US11024272B2

An electronic-drum module for connection to one or more electronic-drum pads is provided. The module includes an electronic display, a memory storing audio files for playback when the playback is triggered by a signal received from a pad, and one or more processors coupled to the electronic display and the memory. The processors are configured to play the audio files when the playback is triggered and display, on the display, a user interface for an application. The user interface for the application includes a list of available trigger sources. The processors are also configured to receive an instruction to select an available trigger source and display, on the display, a list of available drum kits to associate with the available trigger source. The processors are also configured to display images of the available drum kits in response to receiving an instruction to select an available drum kit.
US11024266B2

A display control method and an electronic device thereof according to various embodiments include a display, a processor operatively connected with the display, and a memory operatively connected with the processor, and the memory stores instructions that, when executed, cause the processor to execute an application, to detect performance degradation of the application, and to adjust a resolution of the application based on a resolution adjustment cost of the application in response to the performance degradation of the application being detected.
US11024260B2

The disclosed techniques use a display device, optionally including optical and/or non-optical sensors providing information about the ambient environment of the display device—along with knowledge of the content that is being displayed—to predict a viewer of the display device's current visual adaptation. Using the viewer's predicted adaptation, the content displayed on the display device may be more optimally encoded. This encoding may be accomplished at encode time and may be performed in a display pipeline or, preferably, in the transfer function of the display itself—thereby reducing the precision required in the display pipeline. For example, in well-controlled scenarios where the viewer's adaptation may be fully characterized, e.g., a viewer wearing a head-mounted display (HMD) device, the full dynamic range of the viewer's perception may be encoded in 8 or 9 bits that are intelligently mapped to only the relevant display codes, given the viewer's current predicted adaptation.
US11024254B2

A display control system and a display apparatus are disclosed. The display control system includes a circuit board including a top edge, a bottom edge opposite to the top edge and a side edge intersecting with the top edge and the bottom edge, a length of the top edge and a length of the bottom edge being larger than that of the side edge; a core module on the circuit board for processing display information; an image data output interface on the circuit board, connected with the core module for outputting display image data; a plurality of function modules on the circuit board, connected with the core module for transmitting the display information to the core module. The function modules and the core module are along the top edge, and the image data output interface is on a side of the function modules close to the bottom edge.
US11024249B2

A source driver includes an equalizer which outputs compensated image data by adjusting a frequency gain of image data, based on a selected option value among a plurality of option values. A recovery recovers a clock signal corresponding to the compensated image data. A calibrator sequentially provides the plurality of option values to the equalizer, and selects the selected option value among the plurality of option values, based on recovery rates of the clock signal, which respectively correspond to the plurality of option values.
US11024241B2

A timing controller may include a first compensator configured to generate second data by optically compensating for first data, based on compensation data, a first compensation memory configured to store the compensation data, a second compensator configured to generate image data by compensating for a lifetime of the second data, based on accumulated data of the second data, and a second compensation memory configured to store the accumulated data and the compensation data.
US11024240B2

Effective image correction processing for reducing flicker is executed according to characteristics of images, and an image to be displayed in a liquid crystal display apparatus is generated. Characteristic amount change rate data that is a change rate between a characteristic amount of a sample image and a characteristic amount of a sample image output to a liquid crystal display device is acquired in advance and stored in a storage unit. The correction parameter for reducing flicker is calculated on the basis of the characteristic amount of the image to be corrected and the characteristic amount change rate data of the sample images stored in the storage unit. The correction processing to which the calculated correction parameter has been applied is executed for the image to be corrected to generate a display image. As the characteristic amount, for example, the interframe luminance change amount, the interline luminance conversion amount, or the interframe motion vector is used.
US11024234B2

Embodiments of the present disclosure provide a signal combination circuit, a gate driving unit, a gate driving circuit, and a display device, the signal combination circuit includes a first active level output circuit configured to write an active-level voltage to a driving signal output terminal in a case where a signal provided by a first signal output terminal or a second signal output terminal is at an active level, and a first inactive level output circuit configured to write an inactive-level voltage to the driving signal output terminal in a case where the signals provided by the first signal output terminal and the second signal output terminal are at an inactive level. The signal combination circuit of the embodiments of the disclosure can realize the combination of the single pulse signals output by two shift registers, thereby outputting a double-pulse driving signal.
US11024231B2

A pixel driving circuit is provided. The pixel driving circuit includes an initialization circuit, a driving circuit, and a first light-emitting control circuit. A first terminal of the driving circuit is coupled to a power voltage terminal, a second terminal of the driving circuit is coupled to a light-emitting element via the first light-emitting control circuit. The initialization circuit is configured to write an initialization voltage to a control terminal of the driving circuit under control of an initialization control signal input from an initialization control line, so that the driving circuit brings a connection between the first and second terminals into a conducting state under control of the control terminal. The first light-emitting control circuit is configured to bring a connection between the second terminal and the light-emitting element into a conducting state under control of a first light-emitting control signal input from a first light-emitting control line.
US11024230B2

A display screen, a display device, a display circuit used for the display screen and a brightness compensation method therefor. The display screen (10) includes a normal display area (11) and a transparent display area (12). The display circuit (20) includes: a first pixel circuit (21), wherein the first pixel circuit is arranged at the normal display area; and a second pixel circuit (22), wherein the second pixel circuit is arranged at the transparent display area. The structure of the first pixel circuit is different from that of the second pixel circuit, so that the light transmittance of the transparent display area is higher than the light transmittance of the normal display area.
US11024227B2

A pixel includes a plurality of transistors, a storage capacitor, and an organic light emitting diode. A first transistor controls the amount of current from a first driving power source to the organic light emitting diode based on a data voltage. A second transistor is connected to a data line and is turned on based on a scan signal. A third transistor coupled to the first transistor and is turned on based on the scan signal. A first stabilizing transistor is coupled to the third transistor or between the first and third transistors and is turned off when the third transistor is turned off.
US11024225B2

The present disclosure provides a display substrate and a method for manufacturing the same, a display panel and a display apparatus. The display substrate includes: a light transmissive base substrate and a pixel unit, the pixel unit includes: a first light emitting structure and a second light emitting structure that are arranged in sequence along a direction distal from the base substrate; the first light emitting structure is configured to emit light towards a direction proximal to the base substrate, and the second light emitting structure is configured to emit light towards a direction distal from the base substrate; an orthographic projection region of the first light emitting structure on the base substrate at least partially overlaps an orthographic projection region of the second light emitting structure on the base substrate. The display panel according to the present disclosure can implement double-face display, and achieves a high resolution.
US11024219B2

A flexible and scalable emissive fabric display with individually controllable pixels disposed within a fabric matrix. The pixels may include areas where electroluminescent thread contact conductive threads, and take the form of either individual stitches, or contact points between perpendicularly inlayed conductive threads and electroluminescent threads. Alternatively, the pixels may include individual electroluminescent segments disposed along a conductive thread.
US11024218B2

A method of driving a display by communicating with a controller through a first channel and a second channel includes; generating recovery data from a signal received through the first channel during a frame data period, detecting a vertical blank period between frame data periods, checking a training trigger event history during the vertical blank period, and during the vertical blank period, transmitting a training request direct to the first channel through the second channel when there is a training trigger event history.
US11024217B2

A data driver includes a data driving chip, a first data transmitting line, a second data transmitting line, a first shielding line and a second shielding line. The first data transmitting line and the second data transmitting line are configured to transmit a data signal to the data driving chip. The first shielding line is disposed at a first side with respect to the first data transmitting line. A ground voltage is applied to the first shielding line. The second shielding line is disposed at a second side with respect to the second transmitting line. The second side is opposite to the first side. The ground voltage is applied to the second shielding line.
US11024216B2

A display substrate and a display device including the display substrate are disclosed. In one aspect, the display substrate includes a plurality of pixels formed in a substantially circular pixel area and a driving circuit formed in a peripheral area surrounding the pixel area and configured to drive the pixels. A boundary is formed between the pixel area and the peripheral area, and the boundary is substantially concentric with respect to an arc defining the substantially circular pixel area. The driving circuit comprises a conductive pattern having a first side which extends in a peripheral direction crossing the boundary.
US11024209B2

An integrated circuit for driving a display panel and an anti-interference method are provided. The integrated circuit includes a source driving circuit and an anti-interference circuit. The source driving circuit includes a receiving circuit configured to receive an input signal including image data and process the input signal based on at least one operation parameter to generate output data. The anti-interference circuit is coupled to the receiving circuit. The anti-interference circuit is configured to adjust the at least one operation parameter of the receiving circuit from at least one normal parameter to at least one anti-interference parameter when an interference event occurs to the input signal. The anti-interference circuit is configured to maintain the at least one operation parameter of the receiving circuit at the at least one normal parameter when the interference event does not occur.
US11024208B2

The present disclosure provides a display substrate, a manufacturing method thereof and a display device, belonging to the technical field of displaying. The display substrate includes a display area and a wiring area. The manufacturing method includes: forming a barrier structure at least between the wiring area and the display area; and forming a rheological organic material in the wiring area, so that the rheological organic material levels in the wiring area to form a protective film covering the wiring area.
US11024207B2

User interface systems for sterile fields and other working environments are disclosed herein. In some embodiments, a user interface system can include a projector that projects a graphical user interface onto a data board or other substrate disposed within a working environment. The system can also include a camera or other sensor that detects user interaction with the data board or substrate. Detected user interactions can be processed or interpreted by a controller that interfaces with equipment disposed outside of the working environment, thereby allowing user interaction with such equipment from within the working environment. The data board can be an inexpensive, disposable, single-use component of the system that can be easily sterilized or another component suitably prepared for use in a sterile field.
US11024205B2

A display device includes a patterned panel and a light emitting module. The patterned panel includes a light-transmitting substrate, a first light-transmitting portion, a second light-transmitting portion and a third light-transmitting portion. Each of the light-transmitting portions respectively has a first transmission spectrum, a second transmission spectrum and a third transmission spectrum. The third light-transmitting portion is adjacent to the first light-transmitting portion and the second light-transmitting portion, and the third transmission spectrum has a first overlapping part with the first transmission spectrum, and has a second overlapping part with the second transmission spectrum. The light emitting module includes a first light emitting unit and a second light emitting unit, the first light emitting unit emits a first light having a peak wavelength in the first overlapping part, and the second light emitting unit emits a second light having a peak wavelength in the second overlapping part.
US11024203B2

Provided is a flexible display device, comprising a flexible display panel screen and at least one hand held part, wherein each hand held part is connected to an end of the flexible display screen, and each hand held part comprises a housing body and at least one circuit board accommodated in the housing body, and the housing body and the end of the flexible display screen are installed together, and the at least one circuit board is electrically connected with the flexible display screen. The flexible display device utilizes a flexible display screen, and a hand held part is provided at the end of the flexible display screen. When in use, the flexible display screen is unfolded and viewed by the user holding the hand held part. When not in use, the flexible display screen can be curled for easy carrying with no size restriction.
US11024202B2

A Silicone Edge Graphics advertisement display device, comprising a plurality of three-pipe joints connected to a plurality of transverse pipes, vertical pipes and grooved pipes. The grooved pipes are v-shaped for receipt of an advertising canvas providing ease of set up and advertising canvas replacement.
US11024201B2

A label for a bottle where the label is comprised of a laminate where an outer layer (3) is a material susceptible to losing opaqueness when made wet, and an inner layer (5) behind this first layer which is a material that is opaque, and such that it will maintain such opaqueness when wet.
US11024197B2

A computing and robotics learning platform includes a component ecosystem with gears, pucks, side plates and connectors configured to support the integration of globally available materials, such as rubber bands, pencils and popsicle sticks is described herein. Certain embodiments according to this disclosure include a platform device comprising a multi-layer processing structure capable of implementing student programs written in beginner or high-level programming languages without latency or performance degradation from processing tasks associated with low-level system functions, such as motor encoding.
US11024192B2

A trainable transceiver is provided for a vehicle for transmitting signals to a device remote from the vehicle. The trainable transceiver includes an RF transceiver configured to receive an RF signal during a training mode in order to learn characteristics of the received RF signal, and to transmit an RF signal to the remote device in an operating mode where the transmitted RF signal includes the learned characteristics of the received RF signal; a local memory device for storing channel data representing the learned characteristics of the received RF signal; an interface configured to communicate with an Internet-connected device; and a controller coupled to the local memory device and the interface, the controller configured to retrieve the channel data from the local memory device and transfer the channel data for storage remote from the vehicle using the interface. The controller may also receive channel data from the remote memory device.
US11024186B2

Provided is an unmanned aerial vehicle that broadcasts a route and future location information of the unmanned aerial vehicle within preset coverage based on sensing data and current location information of the unmanned aerial vehicle. The unmanned aerial vehicle includes a calculator configured to calculate a predicted route and second location information of the unmanned aerial vehicle corresponding to a preset period of time based on first location information and sensing data; and a transmitter configured to periodically broadcast a first notification signal that includes the first location information, the predicted route, and the second location information.
US11024175B2

Respective priorities are assigned to data about each of a plurality of objects based on a collision severity and a classification of each of the objects. A message is generated including at least some of the data ordered according to the priorities.
US11024174B2

A parking space detection apparatus detects a parking space of an own vehicle and includes: a vehicle determination section that determines whether an other vehicle is present on at least one of two sides of a parking space, based on search information acquired from an in-vehicle search section that searches for the parking space; a width calculation section that, it is determined that the other vehicle is present on at least one of the two sides of the parking space, calculate a width of the parking space on an entrance side and a width of the parking space on an inner side based on the search information; and a parking determination section that determines whether the own vehicle is able to park in the parking space based on the widths of the parking space on the entrance side and on the inner side and size of the own vehicle.
US11024170B2

A method involves accelerating the electronic determination of high quality solutions to routing problems by utilizing determined optimized time windows for precomputing optimal path matrices to reduce computer resource usage. The use of traffic windows defined based on changes in rates of change of speeds for traffic on road segments allows for more rapid determination of a set of one or more high quality solutions as compared to requiring on-demand, in-process determination of a shortest path for a particular time during comparison of paths or routes performed as part of a process for determining high quality solutions to the routing problem.
US11024168B1

A method for monitoring vehicle usage is described. In one embodiment, the method includes detecting a vehicle event and detecting a query from a mobile device. The query includes a Wi-Fi probe request or Bluetooth inquiry. The method includes identifying a mobile device identifier from the query and associating the mobile device identifier with the vehicle event.
US11024162B2

A traffic management system that manages policy agreements between operators and visual indicator devices receives first sensor data from a physical environment. The traffic management system computationally processes the first sensor data to identify a first visual indication in the sensor data and determines that the first visual indication is associated with first policy agreement. The traffic management system then determines, based on the first sensor data, that a first visual indicator system that provided the first visual indication is violating a first policy included in the first policy agreement and, in response, provides a policy violation notification that the first visual indicator system is violating the first policy.
US11024158B2

A method (30) of providing traffic related information is provided. The method (30) is performed in a device (18a, 18b, 18c, 18d, 18e) and comprises obtaining (31) data relating to a first vehicle (21) and data relating to a second vehicle (22); establishing (32) a relative position between the first vehicle (21) and the second vehicle (22) based on the obtained data; and providing (33), to an entity (13, 14, 19e) in the first vehicle (21), information based on the established relative position. A corresponding device, computer program and computer program product are also provided.
US11024156B2

The present invention relates to a precise predictive maintenance method for a driving unit and a configuration thereof includes a first base information collecting step S10 of dividing change information of an energy size, a second base information collecting step S20 of connecting a peak interval between a highest point and a lowest point of a driving period in a driving state of the driving unit; a setting step S30 of setting an alarm gradient value, and a detecting step S40 of detecting the driving unit as an abnormal state.
US11024155B2

The present invention relates to a precise predictive maintenance method for a driving unit and a configuration thereof includes a first base information collecting step S10 of collecting change information of an energy size; a second base information collecting step S20 of connecting a peak interval between a starting point and an ending point; a setting step S30 of setting an alarm gradient value, and a detecting step S40 of detecting the driving unit as an abnormal state.
US11024152B2

Systems and methods for managing an emergency situation are provided herein. According to some embodiments, the present technology may related to a security system and method for monitoring, detecting, and providing notification and/or response measures in response to an emergency situation regarding a user.
US11024151B1

Systems and methods for activating monitoring of a security system by a central monitoring station are provided. In particular, such systems and methods can include validating a first communication path between a sensor of the security system and a control panel of the security system to allow the security system to be initially set up to operate without monitoring by the central monitoring station and separately validating a second communication path between the control panel and the central monitoring station in response to the control panel or a cloud server receiving an API call from the central monitoring station to enable such monitoring at a later time.
US11024143B2

Disclosed is a method including, receiving, from one or more of a plurality of devices, one or more notifications indicating that one or more audio sound patterns have been detected. The method includes determining whether a same audio sound pattern is detected by two or more of the devices. The method further includes transmitting a notification to each device associated with the same audio sound pattern. The method further includes determining a location of the same audio sound pattern based on one or more criteria and transmitting a notification to each device associated with each of the same audio sound patterns. In some embodiments, the one or more criteria is a time, a duration, a frequency, an amplitude, a speed, or a direction of the audio sound pattern, and an aggregation of information from two or more of the devices.
US11024140B2

An illustrative example monitoring device includes a housing, a detector portion situated in the housing, a substrate situated in the housing and memory supported on the substrate. The memory is configured to contain information regarding operation of the detector portion. The substrate or the memory includes a communication port situated adjacent a portion of the housing. The communication port facilitates obtaining information from the memory. The portion of the housing includes at least one movable section that covers the communication port when the at least one moveable section is in a first position relative to the housing and exposes the communication port when the at least one moveable section is in a second position relative to the housing.
US11024135B1

A haptic button assembly may be used for detecting inputs and providing haptic outputs at an electronic device. The haptic outputs may be provided in response to detected inputs or in response to other conditions at the electronic device. The haptic button assembly may define an input surface along an exterior of the electronic device. Inputs may be provided to the input surface of the haptic button assembly. An input may include a touch input on or along the input surface and/or a force input directed substantially perpendicularly to the input surface. The haptic button assembly may provide a haptic output by moving an input member of the haptic button assembly laterally (e.g., substantially parallel to the input surface).
US11024127B2

A method of playing a game that uses the numbers generated by a Keno game is described. The method includes i) receiving a wager from a player, ii) the player selecting to play a matrix-like game displaying through a display medium the player selected variables, with the matrix containing subsets each with a plurality of numbers, the subsets defined by linear contiguous trajectories; vertical, horizontal and diagonal; the subsets including generally equivalent amounts of variables, each subset including a variable that is shared with at least one other subset in the matrix and there are a plurality of subsets that include a variable that are mutually exclusive to another subset within the matrix, and iii) determining the gaming operators variables, displaying the gaming operators variables, determining whether the player wins or loses the game according to predetermined rules.
US11024121B2

An electronic gaming system includes a processor configured to execute instructions, which when executed, cause the processor to at least receive a wager amount and a bingo card parameter from an electronic gaming machine (EGM) that is communicatively coupled to the electronic gaming system. The instructions may also cause the processor to determine, based upon the wager amount, a subset of a plurality of bingo card parameters and compare the received bingo card parameter to the subset of the plurality of bingo card parameters to determine whether the received bingo card parameter matches any bingo card parameter of the subset of the plurality of bingo card parameters, where each bingo card parameter of the plurality of bingo card parameters is associated with a progressive jackpot. In addition, the instructions may cause the processor to award the progressive jackpot to a player of the EGM in response to determining that the received bingo card parameter matches a bingo card parameter of the subset of the plurality of bingo card parameters.
US11024119B2

Method (300) and control unit (6) for monitoring shuffle quality of cards (4) during a card game. The method (300) comprises: identifying (301) each card (4) of a first round of cards; storing (302) a first sequence of the identified (301) cards (4) of the first round of cards, in the order they are discarded; identifying (303) each card (4) of a second round of cards (4), after shuffling but before being provided to one or more players; storing (304) a second sequence of the identified (303) cards (4) of the second round of cards, in the order they are provided to the one or more players; comparing (305) the stored (302) first sequence of cards (4) with the stored (304) second sequence of cards (4); detecting (306) a predetermined pattern in the second sequence of cards (4), originating from the first sequence of cards (4); and providing (307) an alert (8) when the predetermined pattern is detected (306) in the second sequence of cards (4).
US11024116B1

Dynamic, automatic establishment of social distancing on electronic gaming machines (EGMs). An electronic notice of a game play triggering event that takes place at a first EGM is sent to a control system, and in response to receiving the electronic notice, the control system automatically temporarily deactivates other EGMs that are within a first deactivation zone adjacent to the first EGM. Thereafter, at cessation of game play on the first EGM, the deactivated EGMs are reactivated by the control system. The first EGM may optionally be deactivated to allow the first EGM to be cleaned before the first EGM is activated and made available for additional game play.
US11024107B2

A combination lock has a touch panel to receive a keypad entry code indicative of a combination code for unlocking the lock with various access levels, including a first level and second level. The combination lock is also arranged to receive the combination code from a mobile device via wireless signals. The combination lock also has an independent key-lock mechanism for unlocking the lock with a key. The mobile device has an application icon, when activated, prompting the wireless signals indicative of the combination code. The mobile device also has a deactivation icon and re-activation associated with the combination code of the first level. The deactivation icon causes the disablement of the touch panel and the key-lock mechanism when activated. The re-activation icon terminates the disablement of the touch panel and the key-lock mechanism when activated.
US11024103B2

Methods and systems are provided for a vehicle wirelessly communicating with a central server. In one example, a method may include monitoring faults and sending engine conditions along with driver inputs to the central server for processing.
US11024101B1

A method of generating an augmented reality LENS comprises: causing to display a list of LENS categories on a display screen of a client device; receiving a user choice from the displayed list; causing to prepopulate a LENS features display on the display device based on the user choice, wherein each LENS feature comprises image transformation data configured to modify or overlay video or image data; receiving a user selection of a LENS feature from the prepopulated LENS display; receiving a trigger selection that activates the LENS feature to complete the LENS; saving the completed LENS to a memory of a computer device; generating a variant of the completed LENS; and deploying the variant of the completed LENS and the completed LENS to a messaging system to generate messages.
US11024096B2

3D alignment of a virtual model and corresponding real-world object is provided. A user places virtual tags on the real-world object as viewed through an augmented reality device. By placing these tags at the positions where he perceives certain real-world landmark locations, this allows for correction of misalignments between virtual content on the AR display and the real world. In particular, the virtual model include virtual landmarks that correspond to the real-world landmarks. Thus aligning the virtual landmarks of the virtual model to the virtual tags provides accurate alignment of the virtual model to the corresponding real-world object.
US11024094B2

Methods, apparatus, systems and articles of manufacture are disclosed to map a virtual environment to a physical environment using a weighted linear mapping technique. Example methods disclosed herein include accessing dimensional data corresponding to the virtual environment. Disclosed example methods further include determining areas of relative importance in the virtual environment. Disclosed example methods also include accessing dimensional data corresponding to the physical environment and generating a mapped environment based on the dimensional data corresponding to the virtual environment, the dimensional data corresponding to the physical environment, and the areas of relative importance.
US11024093B2

Various embodiments of the present invention relate generally to systems and methods for analyzing and manipulating images and video. According to particular embodiments, the spatial relationship between multiple images and video is analyzed together with location information data, for purposes of creating a representation referred to herein as a surround view for presentation on a device. A visual guide can provided for capturing the multiple images used in the surround view. The visual guide can be a synthetic object that is rendered in real-time into the images output to a display of an image capture device. The visual guide can help user keep the image capture device moving along a desired trajectory.
US11024089B2

The present inventive concept contemplates a method that of producing a walkabout reality for a user by extracting user-associated characteristics from social media interactions of the user, and using the user-associated characteristics to select a theme and corresponding theme elements from a theme data store. The invention further contemplates producing a virtualization of a current physical environment that includes the avatar of the user and corresponding theme elements. An augmented reality engine executes commands from the user to control actions of the avatar with the virtualization.
US11024079B1

Systems and methods related to an image capture process using panorama paths may include traversing a user device among a plurality of image capture locations of a room, sweeping the user device at each of the image capture locations, capturing imaging data using the user device during the traversal and/or during the sweep, and processing the imaging data using photogrammetry. The imaging data may be captured using an imaging sensor associated with the user device, and the imaging data may be processed based on data received from position and orientation sensors associated with the user device. In addition, a three-dimensional model of the room may be generated based on the imaging data.
US11024077B2

A global illumination calculation method and apparatus is provided. The method includes: acquiring at least one of SDF information and illumination information corresponding to each of preselected pixels displayed on a screen, and the SDF information and illumination information corresponding to each pixel are stored in a two-dimensional map formed by mapping a three-dimensional map; and performing global illumination calculation according to at least one of the SDF information and the illumination information corresponding to each pixel. The method solves technical problems of global illumination calculation methods in the related art that a large amount of hardware resources are consumed and the presented image effects are not ideal enough.
US11024075B2

A system for generating slice data for additive manufacturing, comprises a graphics processing unit (GPU) that receives a digital model of an object in a three-dimensional build space defined over a plurality of slices, computes a three-dimensional signed distance field over voxels in the build space, assigns a building material to each voxel based on a respective distance field value, and generates slice data output pertaining to the building material assignments for each slice. The slice data output can be used for printing the object in layers corresponding to the slices. The distance field comprises one or more vector having a vertical component with respect to the slices.
US11024074B2

In one embodiment, a method includes displaying a first virtual content to a first user in a virtual area, the virtual area comprising one or more second virtual content, inferring an intent of the first user to interact with the first virtual content based on one or more of first user actions or contextual information, and adjusting one or more configurations associated with one or more of the second virtual content based on the inferring of the intent of the first user to interact with the first virtual content.
US11024070B2

A device and a method of managing user information are provided. The device includes a display and a controller. The controller controls the display to display an avatar-based image according to user schedule information, change the avatar-based image according to a user input indicating a request to change the avatar-based image, and update the user schedule information according to the changed avatar-based image. The method includes displaying, on a display of a device, an avatar-based image according to user schedule information, changing the avatar-based image according to a user input indicating a request to change the avatar-based image, and updating the user schedule information according to the changed avatar-based image.