US10716241B2

An air flow distribution system for cooling server racks includes at least one server rack partially defining a hot aisle and a cold aisle, a first air foil disposed above the server rack, and a second air foil disposed above the first air foil. The first air foil and the second air foil are configured to receive air from the hot aisle, and to form turbulent wake patterns in the cold aisle partially defined by the server rack. The air flow distribution system may include a convex ceiling member above the second air foil. A corresponding method includes causing air to be directed between a first air foil disposed above a server rack and a second air foil disposed above the first air foil to form turbulent wake patterns in the cold aisle. An electrical enclosure assembly includes a receptacle and a cover member configured as an air foil.
US10716240B2

Examples herein disclose a multi-channel apparatus include a first channel and a second channel. The first channel receives heated air from an electrical component. The first channel deflects the heated air from a posterior electrical component. The deflection of the heated air is caused by a curvature of an internal partition. The second channel, which is segmented from the first channel via the internal partition, provides cool air to the posterior electrical component.
US10716236B2

Techniques for cooling a data center include circulating an airflow, to a warm air plenum of a first module, from rows of racks that support a heat-generating electronic devices; warming the airflow circulated through the racks; circulating the warmed airflow through a warm air inlet of the warm air plenum that is adjacent an open side of the racks and to a warmed air outlet adjacent a data center volume above the racks; circulating the airflow, with a fan positioned in a second module positioned in the data center volume above the racks, through at least one cooling module to cool the warmed airflow, and into a human-occupiable workspace of the data center adjacent the racks; and diverting the warmed airflow with an airflow partition mounted in the data center volume above the racks and adjusted to interrupt the warmed airflow between the warmed air plenum and the human-occupiable workspace.
US10716234B1

A server rack seismic restraint includes a rear restraint assembly configured to attach to a support surface that is operable to support a data center server rack. The rear restraint assembly includes at least one lateral member positioned to receive the server rack and restrain the server rack against lateral movement based on a force applied to the server rack; and an angled bracket positioned to receive the server rack and restrain the server rack against vertical movement based on the force applied to the server rack. The server rack seismic restraint also includes a front restraint assembly configured to attach to the support surface and engage the server rack to restrain the server rack against vertical movement based on the force applied to the server rack.
US10716231B2

An interposer and method of providing spatial and arrangement transformation are described. An electronic system has an electronic package, a motherboard and an interposer between the package and the motherboard. The interposer has signal and ground contacts on opposing surfaces that are respectively connected. The contacts opposing the package has a higher signal to ground contact ratio than the contacts opposing the motherboard, as well as different arrangements. Ground shielding vias in the interposer, which are connected to a ground plane, electrically isolate the signals through the interposer. The package may be mounted on a shielded socket such that signal and ground pins are mounted respectively in signal and ground socket mountings, ground shielding vias are between the signal socket mountings, and the ground socket mountings contain plated socket housings.
US10716222B2

Method of manufacturing laminate body by: curing thermosetting resin composition on a support; laminating the curable resin onto a substrate; heating the laminate; forming a via hole in the cured resin layer; peeling the supporting body from the cured composite; performing a second heating of the cured composite; removing resin residue in the via hole of the cured composite; and forming a conductor layer on an inner wall surface of the via hole.
US10716221B2

Provided is a method for manufacturing an electronic device. The method includes providing a panel to a stage, providing a circuit board, aligning the circuit board so that first pads of the circuit board face a first pad area of the panel and second pads of the circuit board face a second pad area of the panel, and compressing a first portion of the circuit board on which the first pads are arranged to the first pad area of the panel. The aligning of the circuit board occurs via by external contact on one surface of the first portion of the circuit board and one surface of the second portion of the circuit board.
US10716219B2

A manufacturing method of an electronic product is provided. The manufacturing method includes following steps. Firstly, a conductive circuit is formed on a film, wherein the conductive circuit is made of a conductive metal layer, the conductive metal layer is a metal foil and the conductive metal layer is patterned to form the conductive circuit. Then, an electronic element is disposed on the conductive circuit of the film, and the electronic element is electrically connected to the conductive circuit. Then, the film and a supporting structure are combined by an out-mold forming technology or an in-mold forming technology, such that the electronic element is wrapped between the film and the supporting structure.
US10716216B2

Various aspects of the disclosed technology relate to pixel-based thermal conductivity determination. A pixelized representation is created for a conductor layer of a printed circuit board. The pixelized representation is analyzed to identify conductor paths in a direction. Based on the conductor paths, the conductor pixels separated into net pixels and isolated pixels. An effective thermal conductivity property value in the direction is then computed for a section or a whole of the conductor layer based on the number of the isolated pixels, the number of the net pixels and the number of total pixels in the section or the whole of the conductor layer.
US10716206B2

A flexible printed circuit board (PCB) includes a flexible first layer proximate to a flexible second layer. Conductive traces are arranged in the flexible first layer and coupled to a first circuit block at a first end of the flexible PCB and coupled to a second circuit block at a second end of the flexible PCB such that the first circuit block is coupled to the second circuit block through the conductive traces. Companion traces re arranged in the flexible second layer to provide a reference plane coupled to the first and second circuit blocks. The companion traces are arranged in the flexible second layer to be replicas of the conductive traces such that each one of the conductive traces is proximate to and aligned with a corresponding one of the companion traces along an entire length between the first and second circuit blocks.
US10716204B2

The present application discloses a keyboard, which includes a base plate and a thin film circuit board. The base plate includes a first part, a second part and an inclined part. The first part has a first limiting portion and a second limiting portion, the second part has a third limiting portion. The thin film circuit board includes a first region, a second region and at least one connecting portion. The first region is located on the first part, and the first region has at least one opening. The first limiting portion and the second limiting portion are disposed in said opening. The second region is located on the second part, and the second region has at least one opening. The connecting portion is located on the inclined part, and the third limiting portion is passed through the opening of the second part and propped against the connecting portion.
US10716203B2

To provide an adhesive film comprising a polyimide film and a fluorinated resin layer directly laminated, in which blisters (foaming) in an atmosphere corresponding to reflow soldering at high temperature are suppressed, and a flexible metal laminate.An adhesive film having a fluorinated resin layer containing a fluorinated copolymer (A) directly laminated on one side or both sides of a polyimide film, wherein the fluorinated copolymer (A) has a melting point of at least 280° C. and at most 320° C., is melt-moldable, and has at least one type of functional groups selected from the group consisting of a carbonyl group-containing group, a hydroxy group, an epoxy group and an isocyanate group, and the fluorinated resin layer has a thickness of from 1 to 20 μm.
US10716191B1

A dimmer system includes a master dimmer electrically connected between a power source and a load and structured to control dimming of the load. The master dimmer includes a power supply structured to generate first direct current power and second direct current power and a constant current circuit structured to fix a current level of the second direct current power. The dimmer system also includes a plurality of remote dimmers structured to receive and be powered by the second direct current power with the fixed current level.
US10716186B2

A circuit includes a voltage converter converting a source voltage to a supply voltage at a first node as a function of a feedback voltage at a feedback node. A first output path is coupled between the first node and a second node. Feedback circuitry compares the voltage at the second node to first and second overvoltages, and selectively couples the second node to the feedback node based thereupon. Impedance circuitry is coupled between the first node and a third node. A light emitting diode (LED) chain is coupled to the third node, and is selectively turned on and off as a function of the selective coupling of the second node to the feedback node by the feedback circuitry.
US10716177B2

A method of controlling light emitters of a mobile automation apparatus includes: controlling a depth sensor to capture a plurality of depth measurements corresponding to an area containing a support structure; obtaining a support structure plane definition; selecting a subset of the depth measurements; determining, based on the subset of depth measurements and the support structure plane, whether the subset of the depth measurements indicates the presence of a sensitive receptor; when the determination is affirmative, disabling the light emitters; and when the determination is negative, controlling (i) the light emitters to illuminate the support structure and (ii) a camera to capture an image of the support structure simultaneously with the illumination.
US10716172B2

A method for producing a vehicle plastic pane having a heating function is presented. The method includes: the provisioning of a one- or two-component, semi-transparent, polymeric pane base body; the coating of the pane base body with a protective coating; the embedding of heating wires for direct electrical contact with busbars that are deposited; the usage of a fine powder coating (FPC) plasma process at atmospheric pressure to deposit the busbars; and the mounting a connection element on and/or in each of the busbars.
US10716169B2

A first radio network node (208) and a method for establishing a communications interface between the first radio network node (208) and a second radio network node (210). The first radio network node is configured to provide one or more Evolved Universal Terrestrial Radio Access (E-UTRA) resources and the second radio network node is configured to provide one or more New Radio (NR) resources. Further, the first and second radio network nodes are operating in a wireless communications network (200). The first radio network node obtains a Transport Network Layer (TNL) address of the second radio network node from one out of a first core network node (204); and another first radio network node (208) acting as a proxy. Furthermore, the first radio network node established a communications interface between the first and second radio network nodes based on the obtained TNL address.
US10716165B2

The present invention relates to a wireless communication system. More specifically, the present invention relates to a method and a device for releasing a sidelink radio bearer for D2D communication system, the method comprising: receiving configuration information including a targetID, a sourceID, and an LCID from a peer UE, wherein the UE receives data from the peer UE over the sidelink radio bearer; configuring a sidelink radio bearer identified by the targetID, the sourceID, and the LCID; establishing a RLC and a PDCP entities for the sidelink radio bearer based on the configuration information received from the peer UE; starting a timer for the sidelink radio bearer; and releasing the sidelink radio bearer when the timer expires.
US10716158B1

When a UE is served with dual-connectivity service on a first radio access technology (RAT) concurrently with a second RAT, and when a serving base station faces a choice of which additional carrier to add to the UE's connection according to the first RAT for carrier-aggregation service of the UE according to the first RAT, the selection of an additional first-RAT carrier will be made based on a consideration of the carrier's load attributable to first-RAT-only service as compared with dual-connectivity service. For instance, the base station could select an additional first-RAT carrier based on the carrier's load attributable to first-RAT-only service, perhaps for high-priority first-RAT-only service, being threshold low. Or the base station could exclude from the selection a candidate first-RAT carrier based the carrier's load attributable to such first-RAT-only service being threshold high. The base station could then configure carrier-aggregation service of the UE accordingly.
US10716149B2

Provided are a method of performing a random access procedure in an unlicensed band and a device using the method. The device performs a clear channel assessment (CCA) during a random access preamble (RAP) window in the unlicensed band. If the CCA succeeds, the wireless device transmits a plurality of RAPs. The plurality of RAPs are repeatedly transmitted in a frequency domain or a time domain.
US10716147B2

A method and apparatus for optimizing channel access by an access point (AP) in a wireless local area network is provided, the method comprises transmitting first information to a station, and receiving second information from the station while transmitting the first information to the station, wherein the first information and the second information includes at least one of a request to send (RTS) frame, clear to send (CTS) frame, acknowledgement information, and data, respectively.
US10716142B2

A first communication device determines one or more parameters for transmitting on an uplink control channel in an unlicensed band to a second communication device operating in a wireless communications network. The one or more parameters comprise an indication of a duration of a channel sensing period. The first communication device then transmits on the uplink control channel to the second communication device, by applying the determined one or more parameters. According to a method performed by the second communication device operating in the wireless communications network, the second communication device determines the one or more parameters. The second communication device then initiates transmitting the determined one or more parameters to the first communication device.
US10716139B2

The present invention relates to a wireless access system that supports an unlicensed band, and provides various methods for adjusting a contention window size and devices for supporting the same. As an embodiment of the present invention, a method for adjusting a contention window size (CWS) in a wireless access system supporting an unlicensed band may comprise the steps of: performing a channel access procedure; when, as a result of performing the channel access procedure, it is determined that a serving cell (Scell) in the unlicensed band is in an idle state, transmitting a transmission burst including a downlink signal; receiving HARQ-ACK information corresponding to the transmission burst; and adjusting the CWS on the basis of the HARQ-ACK information corresponding to the first subframe of the transmission burst.
US10716136B2

A wireless device and a method for a wireless device served by a first network node on a primary cell (PCell) is provided. The wireless device is capable of using at least two secondary serving cells (SCells). A first request to perform a measurement on at least one cell on a first secondary component carrier (SCC) with a deactivated first SCell using at least a first measurement cycle is received. A second request to perform a measurement on at least one cell on a second SCC with a deactivated second SCell using at least a second measurement cycle is received. An effective serving cell interruption probability (Peff) of missed at least one of Acknowledgement and Negative-Acknowledgement signaling in an uplink direction is determined based on at least the first measurement cycle and the second measurement cycle. A serving cell interruption probability is ensured to not exceed the determined Peff.
US10716133B2

The disclosure describes mechanisms for reliability enhancement on control channel and data channel and mechanisms in URLLC. An apparatus of a RAN node for URLLC includes baseband circuitry to configure at least one DCI for scheduling transmission of at least one PDSCH content having same information. For each DCI, the baseband circuitry determines a CORESET for transmitting the DCI. The disclosure further describes mechanisms for the support of low latency transmission in URLLC. To improve peak data rate and spectrum efficiency in FDD system, the RAN node configures a DCI for scheduling data transmission using blank resources of a self-contained slot structure. Further, CBG-based transmission with separate HARQ-ACK feedback is provided to configure a DCI for scheduling data transmission of a TB and to divide the TB into multiple CBGs, and to configure uplink control data to carry separate HARQ feedback for the CBGs.
US10716122B2

When a radio bearer for sending packets to a UE is split between master and secondary network nodes, then based on relative network conditions (such as relative link quality in view of latency targets or other conditions that reflect user-plane loading) between that master and secondary network nodes a redundancy retransmission mode may be selected from among multiple redundancy retransmission modes. Each of these redundancy retransmission modes define a different protocol for retransmitting multiple copies of selected ones of the packets to the UE over the split radio bearer. These multiple copies are then wirelessly retransmitted to the UE over the split radio bearer according to the selected redundancy retransmission mode. In one example there are 4 possible modes and different modes retransmit PDCP PDUs versus RLC PDUs; in one mode the master and secondary network nodes both perform retransmissions of the identical selected packets.
US10716121B2

The present disclosure provides a receiver. The receiver comprises an antenna, configured to receive a received signal on a downlink direction, wherein the received signal comprises an interfering downlink signal and a desired downlink signal; and a detecting circuit, coupled to the antenna, configured to perform a multiuser detection operation on the received signal on the downlink direction to generate a detected interfering signal and a detected desired signal; wherein the desired downlink signal is transmitted by a first station, intended for the receiver, and generated according to a first modulation order; wherein the interfering downlink signal is transmitted by a second station, intended for a second receiver other than the receiver, and generated according to a second modulation order.
US10716119B2

Methods and systems for scheduling successive transmissions in a wireless local area network (WLAN). An Access Point (AP) can generate a control signal that includes an identifier field for indicating that previous resource allocation from a previous transmission is to be repeated, and therefore the control signal itself does not contain resource allocation information. One or more stations (STAs) can receive the control signal and can use the previous resource allocation information stored in their respective memory to perform the transmission. The resource allocation can include three-dimensional (3D) resource allocation, which refers to time, frequency and space-domain multiplexing. Because the control signal has the identifier field, the AP can reduce network load and free resources for payload data or other traffic.
US10716114B2

Technology described herein provides systems and technologies that help avoid waste of wireless network resources due to frequent losses of wireless connectivity with energy-harvesting devices (EHDs). An energy-harvesting-indicator communication can be sent from a wireless device to a cellular base station to inform the cellular base station that the wireless device is an EHD. The cellular base station can preserve context information and/or DL data pertaining to a wireless connection with the EHD when a wireless connection is lost due to a temporarily low level of available energy at the EHD. The context information and/or DL data can be preserved by the cellular base station until the period of time elapsed exceeds a threshold time value. Upon receiving a connection-resumption communication from the EHD, the cellular base station can use preserved context information to restore the wireless connection and proceed to send preserved DL data to the EHD.
US10716112B2

In environments such as buildings in which access points are densely deployed, those access points influence each other. To provide a frequency channel allocation scheme in such densely populated environments information gathered by the access points are collected. In such a situation, relying on a list of neighboring access points, background noise, communication medium business, the beacon messages received from access points as well as their associated RSSI, may lead to a frequency channel allocation scheme that may not significantly reduce the interference between access points. The invention introduces an activity-based distance computed between at least two access points which represents a time overlap in a use of the communication medium.
US10716110B2

Examples described herein include systems and methods which include wireless devices and systems with examples of configuration modes for baseband units (BBU) and remote radio heads (RRH). For example, a computing system including a BBU and a RRH may receive a configuration mode selection including information indicative of a configuration mode for respective processing units of the BBU and the RRH. The computing system may allocate the respective processing units to perform wireless processing stages associated with a wireless protocol. The BBU and/or the RRH may generate an output data stream based on the mixing of coefficient data with input data at the BBU and/or the RRH. Examples of systems and methods described herein may facilitate the processing of data for 5G (e.g., New Radio (NR)) wireless communications in a power-efficient and time-efficient manner.
US10716109B2

Methods and systems for hybrid point to multipoint communication systems having multiple downlink channels and a single uplink channel, including the steps of centrally allocating bandwidth to, and synchronizing communications with, a first and a second wireless clients; transmitting, over a shared signal wired distribution line, a first downlink signal transported over a first frequency, a second downlink signal transported over a second frequency, and an uplink signal transported over a fifth frequency; converting the frequency of the first downlink signal to a third frequency, and bi-directionally wirelessly communicating with a first wireless client over the third frequency; converting the frequency of the second downlink signal to a fourth frequency, and bi-directionally wirelessly communicating with a second wireless client over the fourth frequency; and converting and superpositioning a first received wireless uplink signal having the third frequency and a second received wireless uplink signal having the fourth frequency to the uplink signal that is transmitted over the shared signal wired distribution line using the fifth frequency.
US10716103B2

A communication system is presented in which a base station is provided for communicating with a plurality of mobile communication devices in a cellular communication system. The base station operates one of more communication cells and communicates subframes, with each of the plurality of communication devices within the cell(s), each comprising the communication resources of a control region for communicating a control channel and the communication resources of a data region for communicating a respective data channel. The base station communicates a control channel having a first DMRS sequence in a control region of some subframes and a control channel having a second DMRS sequence in a control region of other subframes. The second control channel may be transmitted in a radio beam focussed spatially in a direction of a communication device. The first control channel may be transmitted omnidirectionally throughout the cell(s).
US10716097B2

Methods and apparatus for switching bearers between radio access technologies (RATs) are described. According to aspects of the present disclosure, the uplink part of a bearer may be served by one RAT, while the downlink part of the bearer is served by another RAT. A part of a bearer may be served by more than one RAT. Methods and apparatus for communicating via bearer with parts served by differing RATs are also described.
US10716091B2

This disclosure provides systems, methods and apparatus, including computer programs encoded on computer storage media for intelligent routing of notifications of incoming voice communication requests. A device, such as a smartphone, may receive an incoming voice communication request, such as a cellular voice call. The smartphone may then identify devices connected to it, such as headsets, tablets, etc., and request each device activate a microphone or camera to attempt to locate the user with respect to the connected devices. The smartphone may then select one of the connected devices, or itself, as the device best able to notify the user of the incoming call based on captured audio, images, or video. The smartphone may then request the selected device output a notification, such as a ring tone, to notify the user of the incoming call. Such a technique may avoid inundating the user with simultaneous call notifications from multiple devices.
US10716090B2

A technique for the estimation of the location of a wireless terminal. The disclosed technique considers boundaries that are represented in a geographic information system (GIS) database in combination with a first, unenhanced estimate of location, in order to generate a second, enhanced estimate of location. To do so, the technique generates a point cloud based on the first estimate of location. At least some of the data points in the point cloud are then removed, depending on their positions in relation to certain boundaries stored in the GIS database, such as the exterior walls of buildings and other structures. By considering these boundaries, the disclosed technique can increase the probability that the estimated location is within an area that is occupiable by a person, thereby providing a more reasonable result. The technique generates the second, enhanced estimate based on the distribution of the remaining data points.
US10716088B2

Determining a location for a non-access point device based on non-access point device emulation of an access point (AP) device is disclosed. A non-AP device can pass itself off as an actual AP device to piggyback of location reporting by user equipment (UE). Where a UE observes an emulated AP, e.g., a non-AP device masquerading as an AP device, the observance of the emulated AP can be reported, along with UE location information captured at the time of the observance, to a network database. The UE location information can be used to determine a location of the emulated AP. The location of the emulated AP can be retrieved from the database in response to a query identifying the emulated AP. This can enable the non-AP device to query its own location as observed by the UE. This can enable other devices to receive the location of the non-AP device.
US10716087B1

The present disclosure describes an autonomous mechanism for seamlessly coordinating timing of subscriber devices in a service provider system based on the subscriber devices' physical geographic locations. The service provider system dynamically calibrates local times for subscriber devices in geographic locations around in the world without requiring additional local infrastructure. This calibration allows the subscriber devices to receive customized services specifically tailored to their physical geographic locations from the service provider system. Moreover, this autonomous mechanism allows the subscriber devices to be quickly re-purposed to different physical geographic locations without the need to manually configure each individual subscriber device prior to relocation.
US10716084B2

Certain aspects of the present disclosure generally relate to downlink (DL) based and uplink (UL) based positioning reference signal (PRS) techniques that may help facilitate positioning procedures in systems deploying narrowband devices, such as narrowband Internet of Things (NB-IoT) devices. An exemplary method that may be performed by a node includes monitoring for positioning reference signals (PRS) transmitted from one or more base stations within a narrowband region of a wider system bandwidth, wherein tones of the PRS are repeated across at least one of multiple symbols within a same subframe, or multiple consecutive subframes, and estimating timing from the one or more base stations based on the PRS.
US10716073B2

In an example method, a mobile device connects a voice call for a user. The voice call causes one or more radio frequency transmitters of the mobile device to transmit radio waves at a first power level. Motion data describing movement of the mobile device is obtained, and the orientation of the mobile device is determined based on the motion data. A determination whether the mobile device is on the user's body or on an inanimate object is made based on the orientation of the mobile device over the period of time. The transmit power level is adjusted based on the determination.
US10716066B2

Embodiments of a high efficiency subchannel selective transmission (HE SST) access point (AP) and an HE SST station (STA) are generally described herein. The HE SST AP may determine a temporary primary channel for an HE SST STA. The HE SST AP may communicate with the HE SST STA in a plurality of channels that includes the temporary primary channel and further includes a primary channel. The HE SST AP may determine trigger-enabled target wake time service periods (TWT SPs) for exchange of frames between the HE SST AP and the HE SST STA on the temporary primary channel. The trigger-enabled TWT SPs may be determined to not overlap with target beacon transmission times (TBTTs) at which beacon frames that include delivery traffic indication maps (DTIMs) are to be sent on the primary channel by the HE SST AP.
US10716059B2

Techniques for a link budget limited UE to improve communications performance with cellular networks are disclosed. The UE may be associated with subscriptions to multiple carriers and may connect to a cell of a first carrier. The UE may detect that received signal strength from the cell is below a threshold and search for a new cell that may be of a different carrier. The UE may store a PLMN eSIM priority look up table and the search may be based on the look up table. Additionally, the UE may track received signal strength and geographic location in a first data structure that the UE may send to a server. The UE may receive a second data structure from the server that includes received signal strength at geographic locations compiled from a plurality of UEs, including the UE. The UE may also use the second data structure in searches for a new cell.
US10716055B2

A scanning method performed by a station (STA) in a wireless LAN system is provided. The method comprises: transmitting a probe request frame; and receiving a short probe response frame from an access point (AP) as a response to the probe request frame. The short probe response frame includes service set ID (SSID) information or compressed
US10716054B2

Methods and systems for accessing networks prohibit uncontrolled communications over a designated network. In some aspects, a method of controlling network access is disclosed. The method comprises transmitting, by a first access point, a first beacon over a first network to a station, the first beacon including information allowing the station to associate with the first access point. The method also comprises receiving a probe request at the first access point over the first network from the station, the probe request including a request for rules for associating with a second network. The method additional comprises generating a probe response to include the rules regarding associating with the second network, wherein the rules do not permit uncontrolled communications over the second network. The method further comprises transmitting the probe response from the first access point to the station over the first network.
US10716041B2

The present disclosure relates to communication methods and devices. One example access network device includes at least one processor configured to generate requirement indication information. The requirement indication information is used to indicate a radio resource management (RRM) requirement to be satisfied by a user equipment (UE). The RRM requirement is suitable for a high-speed mobile communication environment. The example access network device also includes a transmitter configured to send the requirement indication information to the UE.
US10716038B2

A method performed by a first wireless device for handling a device-to-device (D2D) communication with a second wireless device during handover of the first wireless device from a source network node to a target network node in a wireless telecommunications network is provided. The first wireless device interrupts the D2D communication. Then, the first wireless device determines a first uplink timing difference as the difference between the uplink timing to the source network node and the uplink timing to the target network node. Further, the first wireless device reconfigures the D2D communication based on the first uplink timing difference. Then, the first wireless device restarts the D2D communication as reconfigured. A first wireless device is also provided, along with a target network node, a source network node and methods therein for handling a D2D communication.
US10716033B2

A method and apparatus for transferring a session from a packet switched access network to a circuit switched access network. A Mobility Management Entity receives a service type indicator from a gateway node. The service type indicator indicates a type of service for the session, and is associated with bearers used for the session. The Mobility Management Entity subsequently receives, from an eNodeB, an indication that the session is to be transferred from the packet switched network to the circuit switched access network. The Mobility Management Entity determines the bearers associated with the session using the service type indicator, and initiates transfer of the session using those bearers. This ensures that the correct bearers are transferred regardless of whether or not identifiers such as QCI values have been ascribed to other types of service.
US10716029B2

A terminal includes: an application compatibility information acquirer that acquires first application compatibility information indicating an application with which a base station located on a channel of communication with a communication partner terminal is compatible; a utilized application negotiator that negotiates with the communication partner terminal about utilization of an application, included in applications with which the terminal is compatible, that matches the application indicated by the first application compatibility information; and a compression mode determiner that determines a compression mode on the basis of a result of negotiations about the application.
US10716016B2

A method of managing Wi-Fi access points using a Wi-Fi network manager is disclosed. Measurement data is received from a plurality of Wi-Fi access points via a control interface. Optimized adjustments to one or more Wi-Fi parameters associated with one or more of the plurality of access points are searched based at least in part on a set of network optimization goals and the measurement data received from the plurality of access points. At least some of the optimized adjustments to the one or more Wi-Fi parameters are transmitted to the one or more of the plurality of access points using the control interface.
US10716013B2

Methods, systems, and devices for wireless communication are described for transmitting a first signal corresponding to a symbol so as to cover a geographic sector with via analog beamforming, transmitting, using analog beamforming and a second port, a second signal corresponding to the symbol, wherein aspects of the symbol are phase modulated with respect to the first signal such that corresponding aspects of a combined signal are beam-formed in one or more directions that at least partially overlap the geographic sector, a receiver receives the combined signal and from it determines a preferred refined beam for subsequent transmissions and transmits an indicator that includes the preferred refined beam, and the transmitter receives an indication from a receiver identifying one or more aspects of the combined signal, and determining a refined beam for subsequent transmissions based at least in part on the indication.
US10716012B2

Described herein are techniques for beamforming a wireless signal to a harvesting device. In an example, a method to increase available energy to a harvesting device is performed by a WiFi transmitting device. The WiFi transmitting device determines a preferred wireless path to the harvesting device using input from a proxy device. The WiFi transmitting device then beamforms a WiFi signal to the harvesting device along the preferred wireless path.
US10716010B2

The present invention relates to an improved predicting of target carrier radio conditions in a communication network. The improved prediction is achieved by acquiring, by a first network node, measurement data based on radio signals at a source carrier and a first target carrier. Subsequently, a target carrier radio condition prediction function is identified by the first network node or a second network node.
US10716002B2

The present disclosure relates to a communication method and system for converging a 5th-Generation (5G) communication system for supporting higher data rates beyond a 4th-Generation (4G) system with a technology for Internet of Things (IoT). The present disclosure may be applied to intelligent services based on the 5G communication technology and the IoT-related technology, such as smart home, smart building, smart city, smart car, connected car, health care, digital education, smart retail, security and safety services. Embodiments herein achieve a method for authenticating access in a mobile wireless network system. The method includes receiving by an Extensible Authentication Protocol (EAP) authenticator an EAP packet encapsulated from an access terminal over a high rate packet data radio link and a signaling interface through a radio access network. The EAP packet is encapsulated over at least one of a Non-Access Stratum (NAS) interface, a Radio Resource Control (RRC) interface and a N1 interface. The EAP authenticator is located at a secured node in a core network of the radio access network. Further, the method includes authenticating by the EAP authenticator at least one of a network access subscription and a service of the access terminal.
US10715993B2

An electronic apparatus used on a user equipment side includes a processing circuit. The processing circuit is configured to select the mode of the relay discovery process of user equipment. In the relay discovery process, the mode determines whether the user equipment, when acting as a relay device, discovers a relayed device or is discovered by a relayed device, or whether the user equipment, when acting as a relayed device, discovers a relay device or is discovered by a relay device. After a connection is established between the relay device and the relayed device, the relayed device obtains a communication service via the relay device by means of a proximity service communication. The processing circuit is further configured to perform control, so that the user equipment carries out the relay discovery process according to the selected mode.
US10715990B2

An information processing method, applied to a first Device-to-Device (D2D) User Equipment (UE), is provided. In the method, auxiliary information is received from a first access node of the first D2D UE; and a second access node is accessed according to the auxiliary information, where the first access node and the second access node are access nodes of different types.
US10715988B2

Various embodiments disclosed herein provide for a disaster event management system that can track location of employees and other affected during disaster events and other emergency situations and determine their safety status. The disaster event management system can determine when an emergency event has occurred, and determine which employees are likely to be affected by the emergency, based on their location at the time and other directory information. The system can provide an interface on user equipment devices operated by the employees (mobile devices, laptops, computers, tablets, etc) to provide their status along with an identification code to verify their identification. In an embodiment, the system can prompt the user equipment devices to provide a status in response to determining that the employee may be affected by the emergency situation.
US10715986B2

A control system for hazardous environments decreases flame paths, decreases punctures to the control system when installing interfaces, and increases safety. The control system may be characterized as a “one size fits all” controller that is able to automatically recognize a plurality of user interfaces. The controller has an enclosure to which the interfaces can be attached. The interfaces may interact with control electronics wholly contained in the enclosure using a variety of “wireless” mechanisms. Such mechanisms include reflecting light waves, infrared (IR) communication, radio-frequency identification, inductive coils, short-range wireless communication, camera images, piezoelectricity, and magnetism, and the like. The interfaces may include switches, indicator lights, smoke detectors, and the like.
US10715976B2

A method, a device, and a non-transitory storage medium are described in which an event detection service is provided. A network device of a Multi-access Edge Computing network receives sensed data from vehicular devices and metadata. The network device is pre-configured with criteria information to detect events including events pertaining to public safety. The network device also can be remotely triggered to detect customized events. The network device may trigger vehicular devices to capture sensed data. The network device may receive and analyze the sensed data and the metadata, and determine whether the customized event is detected.
US10715969B1

In a wireless communication network, provisioning circuitry transfers a QoS code to a Subscriber Identity Module (SIM) in wireless User Equipment (UE). The UE receives a user message, and in response, retrieves the QoS code from the SIM. The UE wirelessly transfers a network message having the user message and the QoS code to messaging circuitry. In response to the QoS code, the messaging circuitry adds a QoS header to the network message. The messaging circuitry handles the network message with the enhanced QoS responsive to the QoS header. The messaging circuitry generates a new network message having the QoS header and the user message. The messaging circuitry handles the new network message with the enhanced QoS. The messaging circuitry transfers the new network message having the QoS header and the user message for delivery to the destination.
US10715967B1

A method and apparatus for notifying authors of a conflict in a report is described herein. During operation authors' devices will be dynamically added to a particular talkgroup if it is determined that a conflict in a report has been detected.
US10715961B2

Apparatus and methods for enabling location identification and related services in a premises. In one embodiment, location identification services are provided via a gateway device using data extracted from a wireless signal. The data is used to estimate a location of a device (based on comparison to previously gathered and/or reference data). In another embodiment, infrared (IR) or other short range wireless signals are broadcast from the client devices to a set-top-box (STB), and the STB or gateway correlates the signals to a location within the premises. A profiling process is used to establish specific locations within a premises, and associate location-specific services therewith. The location-based services include for example (i) loading particular applications and/or content when the user enters a particular location, (ii) providing information and/or advertisement opportunities when the user is near a particular public or business location, and (iii) content delivery optimization among multiple user devices.
US10715956B2

A method for safely and efficiently requesting transportation services through the use of mobile communications devices capable of geographic location is described. Individual and package transportation may be provided. New customers may be efficiently serviced, and the requester and transportation provider locations may be viewed in real time on the mobile devices.
US10715953B2

Systems and methods for improving a location search process are provided. In example embodiments, a networked system receives an indication of a search being performed at a user device. The networked system detects a location of the user device. Based on the location of the user device, the networked system identifies a dynamically generated region in which to perform the search that corresponds to the location of the user device. Based on a search term, the networked system performs the search in the dynamically generated region corresponding to the location of the user device. A result of the search is presented on the user device.
US10715950B1

A method of tuning a point-of-interest (POI) definition in a mobile communication device location data analysis application. The method comprises configuring a POI group definition into the analysis application, causing by a POI tuning application the analysis application to execute and count intersections of routes of mobile communication devices with a POI group based on the POI group definition, for each POI that is associated with the POI group, assigning the count of intersections with the POI group by the analysis application to a count of intersections of routes of devices with the POI, receiving information about the count of intersections of the routes of devices with the plurality of POIs in the POI group from the analysis application by the POI tuning application, and presenting the information about the count of intersections in a user interface by the POI tuning application, whereby the analysis application is iteratively tuned.
US10715941B2

This disclosure relates to a mobile, autonomous audio sensing and analytics system and method for monitoring operating states in one or more environments including manufacturing, commercial, and residential environments. The autonomous audio sensing and analytics system comprises: a plurality of machines configured to listen and collect information; at least one autonomous audio sensing and analytic system configured to capture the listened and collected information; and a visualization system communicatively coupled to at least one or more of machines or the autonomous audio sensing and analytic system, wherein the autonomous audio sensing and analytic system communicatively coupled to more than one machine stores, classifies, estimates, and outputs the information to the visualization system for performing at least one of analysis operation or failure notification.
US10715937B2

An ear-worn electronic device includes a housing comprising a first end and an opposing second end, a first side and an opposing second side, and the first and second sides extending between the first and second ends. The first side is configured to contact the wearer's head. A battery is disposed within the housing proximate the first end. An acoustic receiver or an acoustic receiver connector is disposed within the housing proximate the second end. Electronics including a near-field magnetic induction (NFMI) radio are disposed in the housing. A directional magnetic antenna is situated in or on the housing and coupled to the NFMI radio. The antenna comprises a core having a complex shape and a coil wound around a portion of the core. The core comprises a closed end oriented toward a source of magnetic noise and an open end oriented away from the source of magnetic noise.
US10715931B2

An example of an apparatus configured to be worn by a person who has an ear and an ear canal includes a first microphone adapted to be worn about the ear of the person, and a second microphone adapted to be worn at a different location than the first microphone. The apparatus includes a sound processor adapted to process signals from the first microphone to produce a processed sound signal, a receiver adapted to convert the processed sound signal into an audible signal to the wearer of the hearing assistance device, and a voice detector to detect the voice of the wearer. The voice detector includes an adaptive filter to receive signals from the first microphone and the second microphone.
US10715930B2

According to an embodiment, an optical MEMS transducer includes a diffraction structure including alternating first reflective elements and openings arranged in a first plane, a reflection structure including second reflective elements and configured to deflect with respect to the diffraction structure, and an optical element configured to direct a first optical signal at the diffraction structure and the reflection structure and to receive a second optical signal from the diffraction structure and the reflection structure. The second reflective elements are arranged in the first plane when the reflection structure is at rest. Other embodiments include corresponding systems and apparatus, each configured to perform various embodiment methods.
US10715920B2

The present disclosure relates to the field of electronic technologies, and discloses an electronic device. The electronic device includes a vibration plate, and a frame for supporting the vibration plate. The frame includes a supporting portion opposite to and parallel to the vibration plate, and a border bent at an edge of the supporting portion and extending along the edge in two opposite directions. The vibration plate is supported by the supporting portion and a gap is reserved between the vibration plate and the border. An actuator is fixed to a surface of the vibration plate facing the supporting portion, and the actuator drives the vibration plate to vibrate and sound. A damper is provided between the vibration plate and the supporting portion. Compared with the prior art, the electronic device provided by the present disclosure can alleviate the vibration of the frame during sounding.
US10715915B2

An audio system provides for crosstalk processing and crosstalk compensation processing of an audio signal. The crosstalk processing may include crosstalk cancellation processing or crosstalk simulation processing. A crosstalk processed signal is generated by applying the crosstalk processing to a side channel of the left and right channels, with a mid channel of the left and right channels bypassing the crosstalk processing. The crosstalk processed signal and the mid channel that bypasses crosstalk processing is used to generate a left output channel and a right output channel. In some embodiments, a crosstalk compensated signal is generated by applying crosstalk compensation processing to the side channel. The crosstalk compensated signal adjusts for spectral defects caused by the crosstalk processing. The crosstalk processing and crosstalk compensation processing may be applied in different orders. The left and right output channels are generated using the crosstalk processed signal and the crosstalk compensated signal.
US10715914B2

A signal processing apparatus that generates a reproducing signal from an input audio signal includes an information acquisition unit that acquires information about an arrangement of a plurality of speakers used for reproduction of a sound that is based on the reproducing signal, a specifying unit that specifies a target range for localization of a sound corresponding to the input audio signal, a setting unit that sets a plurality of virtual sound sources used for localization of a sound based on the specified target range based on the acquired information about the arrangement of the plurality of speakers, and a generation unit that generates the reproducing signal by processing the input audio signal based on setting of the plurality of virtual sound sources.
US10715906B2

A modular speaker system, comprising an exoskeleton, configured to mechanically support and quick attach and release at least one functional panel and an electrical interface provided within the exoskeleton, configured to mate with a corresponding electrical connector of the functional panel. An optional endoskeleton is provided to support internal components. The system preferably provides a digital electronic controller, and the electrical interface is a digital data and power bus, with multiplexed communications between the elements of the system. The elements of the system preferably include at least one speaker, and other audiovisual and communications components. Multiple modules may be interconnected, communicating through the electrical interface. A base module may be provided to provide power and typical control, user and audiovisual interface connectors.
US10715899B2

The present invention discloses a wind noise prevention microphone and an earphone cable control apparatus. The microphone comprises: a microphone chamber enclosed by a bottom and a first side wall; a microphone unit arranged inside the microphone chamber and of which a sound pick-up hole of the microphone unit is arranged opposite to the bottom, a set gap being arranged between the sound pick-up hole and the bottom; and a sound channel in communication with the sound pick-up hole and an outer space, and led out of the first side wall. The sound channel of the microphone is arranged on a side of the sound pick-up hole of the microphone, other than directly opposite to the sound pick-up hole of the microphone, which can effectively reduce wind noise and improve the sound pick-up quality.
US10715872B2

A media sharing and communication system, including a recording mechanism that records a desired portion of media upon activation by a first individual user, a first user transmitter/receiver that transmits the portion of media and a voice message generated by the first individual user regarding the portion of media to a second individual user and is capable of transmitting a message to a second individual user during a live program, a confirmation mechanism that confirms that the second individual user is authorized to view the portion of media and a notification mechanism that notifies the first individual user if the second individual user is not authorized to receive the portion of media, and a second user transmitter/receiver that receives the portion of media and voice message upon authorization of the second individual user. A method of sharing portions of media and watching a live program.
US10715869B1

Systems and methods are described for selecting content item identifiers for display. The system may identify a set of content items that are likely to be requested in the future based on a history of content item requests. The system then selects a first plurality of content categories using a category selection neural net and selects a first set of recommended content items for the first plurality of content categories. The system increases a reward score for the first plurality of content categories based on receiving a request for a content item that is included in the first set of recommended content items. The system also decreases the reward score for the first plurality of content categories based on determining that the requested content item is included in the set of content items that are likely to be requested in the future. The neural net is trained based on the reward score of the first plurality of content categories to reinforce reward score maximization. The trained neural net is the used to select content items for display.
US10715866B2

The approach disclosed herein allows an end user to seamlessly switch and enjoy different versions of the same composition in a broadcast with one simple user action or gesture such as, for example, a swipe, button, click, or other user action. In particular, by utilizing a plurality of instances of an automation playback system or database with identical media libraries containing different versions of the same compositions, running the different versions of a selected composition locked together, and utilizing mechanics within the application, site, or platform, the user can switch between, for example, an uncensored and censored version of the same composition in real time.
US10715860B1

In combination with video content transmitted by a video streaming service, additional content may also be displayed to viewers. The video streaming service may provide a framework that allows the additional content to be provided by third parties. By allowing third parties to develop and provide additional content, the range of interactions and experiences made available through such content may, in some cases, be significantly expanded. The additional content may be displayed inside a respective assigned area, such as an inline frame (Iframe), embedded within a web page or other interface in which the video content is displayed. Additionally, techniques may be provided for controlling focus between a video player that displays the video content and the embedded area that displays the additional content, for example to help ensure that user input is provided to its intended target.
US10715858B2

When a user inputs an operation of recording a broadcast program into a broadcast reception device, the broadcast reception device outputs, by a display video output unit of the broadcast reception device, a recording setting screen selecting a first recording method of recording program related information and not recording a video content of a broadcast program or a second recording method of recording the program related information and a video content of the broadcast program about a first program. When the first recording method is selected, the program related information is recorded and the video content of the broadcast program is not recorded. When the user inputs an operation of playing back the first program into the broadcast reception device, the broadcast reception device communicates with the server, receives the video content of the first program from the server, and outputs the video content by the display video output unit.
US10715855B1

Embodiments of the present disclosure provide methods, systems, and apparatuses for computing a channel incrementality ratio using a machine learning model.
US10715854B2

The present disclosure discloses a method and apparatus for pushing information. A specific embodiment of the method comprises: acquiring video information of a video played by a user using a terminal, and analyzing the video information to generate a keyword set; selecting at least one piece of candidate push information to generate a set of push information, based on a matching relationship between the keyword set and each piece of candidate push information; and pushing the set of push information to the terminal. This embodiment improves pertinence of the pushing for the information.
US10715849B2

A system may receive, from multiple data providers or multiple platforms, data associated with content, a content provider that provides the content, and multiple channels via which the content is provided or consumed. The data may include first data, received from a first data provider or a first platform, that is associated with a different file type than second data received from a second data provider or a second platform. The system may include a data model associated with the first data and the second data. The system may aggregate the data from the multiple data providers or the multiple platforms. The system may identify a relationship between the first data and the second data. The first data and the second data may be different types of data. The system may perform an action based on the relationship between the first data and the second data.
US10715833B2

An encoding system may include a video source that captures video image, a video coder, and a controller to manage operation of the system. The video coder may encode the video image into encoded video data using a plurality of subgroup parameters corresponding to a plurality of subgroups of pixels within a group. The controller may set the subgroup parameters for at least one of the subgroups of pixels in the video coder, based upon at least one parameters corresponding to the group. A decoding system may decode the video data based upon the motion prediction parameters.
US10715828B2

According to one embodiment, an image encoding method includes selecting a motion reference block from an already-encoded pixel block. The method includes selecting an available block including different motion information from the motion reference block, and selecting a selection block from the available block. The method includes generating a predicted image of the encoding target block using motion information of the selection block. The method includes encoding a prediction error between the predicted image and an original image. The method includes encoding selection information identifying the selection block by referring to a code table decided according to a number of the available block.
US10715822B2

An image encoding method includes: determining N P-frames from a sequence of images, N being a positive integer; for each P-frame, determining a source refreshing region in the P-frames, the source refreshing region being a portion less than a whole region of the P-frame; obtaining reconstructed images corresponding to the source refreshing regions by performing a first encoding on the source refreshing regions; obtaining updated P-frames by updating the source refreshing regions with the reconstructed images; and performing a second encoding on the updated P-frames.
US10715811B2

Provided are a method and apparatus for determining a merge mode by using motion information of a previous prediction unit. The method of determining a merge mode includes obtaining a merge mode cost of a lower depth based on a merge mode cost of a coding unit of an upper depth obtained by using motion information of a merge mode of the coding unit of the upper depth corresponding to a merge mode of the coding unit of the lower depth.
US10715809B2

A decoder for decoding a data stream into which media data is coded has a mode switch configured to activate a low-complexity mode or a high-efficiency mode depending on the data stream, an entropy decoding engine configured to retrieve each symbol of a sequence of symbols by entropy decoding using a selected one of a plurality of entropy decoding schemes, a desymbolizer configured to desymbolize the sequence of symbols to obtain a sequence of syntax elements, a reconstructor configured to reconstruct the media data based on the sequence of syntax elements, selection depending on the activated low-complexity mode or the high-efficiency mode. In another aspect, a desymbolizer is configured to perform desymbolization such that the control parameter varies in accordance with the data stream at a first rate in case of the high-efficiency mode being activated and the control parameter is constant irrespective of the data stream or changes depending on the data stream, but at a second lower rate in case of the low-complexity mode being activated.
US10715806B2

Methods, systems, and computer readable media for transcoding video data based on metadata are provided. In some embodiments, methods for transcoding video data using metadata are provided, the methods comprising: receiving a first plurality of encoded images from a storage device; decoding the first plurality of encoded images based on a first coding scheme to generate a plurality of decoded images; receiving a plurality of encoding parameters from the storage device; and encoding the plurality of decoded images into a second plurality of encoded images based on a second coding scheme and the plurality of encoding parameters.
US10715803B2

Virtual boundary processing in adaptive loop filtering (ALF) requires that padded values be substituted for unavailable pixel rows outside the virtual boundaries. Methods and apparatus are provided for virtual boundary processing in ALF that allow the use of more actual pixel values for padding than in the prior art.
US10715795B2

A method for determining a diagnostic condition of a vehicular video connection includes providing a video driver, a video cable, a video driver power supply, a current sensor and a microcontroller. The video driver is powered via the video driver power supply. Current flowing to the video driver from the video driver power supply is sensed via the current sensor. The microcontroller determines a current level sensed by the current sensor during operation of the video driver. An open circuit condition may be determined when the determined current level of the current flowing into the video driver falls below a predetermined quantity, and/or a short to battery condition may be determined when the determined current level of the current flowing into the video driver exceeds a predetermined quantity.
US10715794B2

An eye tracking system includes a pair of glasses including two frames and a light scanning projector coupled to the pair of glasses and operable to scan a beam of light. The eye tracking system also includes an eyepiece mounted in one of the two frames and optically coupled to the light scanning projector. The eyepiece includes an exit pupil expander operable to direct at least a portion of the beam of light towards an eye of a user. The eye tracking system further includes one or more photodetectors coupled to the pair of glasses and a processor coupled to the light scanning projector and the one or more photodetectors.
US10715793B1

The inventive method involves receiving as input a representation of an ordered set of two dimensional images. The ordered set of two dimensional images is analyzed to determine at least one first view of an object in at least two dimensions and at least one motion vector. The next step is analyzing the combination of the first view of the object in at least two dimensions, the motion vector, and the ordered set of two dimensional images to determine at least a second view of the object; generating a three dimensional representation of the ordered set of two dimensional images on the basis of at least the first view of the object and the second view of the object. Finally, the method involves providing indicia of the three dimensional representation as an output.
US10715792B2

A display device and a method of controlling the same are provided. The display device includes: a display panel including a plurality of pixels, each of which includes a plurality of sub pixels; a prism panel at one side of the display panel and including a prism array and a liquid crystal; a prism panel driver configured to apply voltage to the prism panel; and a controller configured to display a plurality of image frames on the display panel and to control a driving state of the prism panel variably while the plurality of image frames is displayed.
US10715785B2

An electronic device includes: a playback unit which plays back a viewing-direction-changeable moving image; a management unit which stores viewpoint information as a record of a viewing direction in playing back the moving image; and a control unit which carries out control so that a range of the moving image including a viewing direction identical to a viewing direction on a previous playback occasion is extracted and displayed based on the viewpoint information stored in the management unit, in response to predetermined user operation different from an instruction for normal-speed playback and related to playback of the moving image or specification of a playback position in the moving image, and carries out control so that the displaying the range based on the viewpoint information is not performed in response to an instruction for normal-speed playback.
US10715769B2

A first image display element modulates first illumination light in which red illumination light and infrared illumination light are alternately switched, based on an image signal for visible light image and an image signal for infrared light image, and emits first image light in which red image light and infrared image light are alternately switched. A second image display element modulates green illumination light based on a green image signal, and emits green image light. A third image display element modulates blue illumination light based on a blue image signal, and emits blue image light. A synthesizer synthesizes the first image light, the green image light, and the blue image light with one another, and obtains synthesized image light. A projection unit projects the synthesized image light.
US10715759B2

A method of using an athletic activity heads up display system during an athletic activity includes the steps of a heads up display unit receiving information about a sport ball and the heads up display unit displaying an image to an individual based on the information, where the image is overlaid on the individual's present field of view of an environment.
US10715758B2

An amplification circuit includes a first amplification block suitable for primarily amplifying a voltage difference between a first voltage and a second voltage corresponding to a first input current and a second input current, respectively, and a second amplification block suitable for secondarily amplifying the voltage difference between the first and second voltages to generate an amplification signal.
US10715755B2

To prevent a decrease in yield due to a break in a signal line that transmits an image signal, while preventing a decrease in image quality. A solid-state image sensor includes a photoelectric conversion unit, a plurality of image signal lines, and output control units. In the solid-state image sensor, the photoelectric conversion unit generates an image signal that is a signal corresponding to incident light. In addition, the plurality of image signal lines transmit the image signal. Furthermore, the output control units are connected to the respective plurality of image signal lines and output the generated image signal to the respective plurality of image signal lines.
US10715744B2

A vehicular display control device includes a video acquiring unit configured to acquire video data captured by a rear camera configured to capture a rear view of a vehicle, a frequency detecting unit configured to detect a frequency of a driver's action in the vehicle for changing a range of view with respect to a display installed in front of the driver, a video data generating unit configured to clip, when the frequency of the driver's action detected by the frequency detecting unit becomes high, a clipping range in the captured video data acquired by the video acquiring unit wider than a clipping range before the frequency of the driver's action becomes high to generate video data for a predetermined time, and a display controller configured to cause a display installed in front of the driver to display the video data generated by the video data generating unit.
US10715739B2

An electronic device and a method of operating the electronic device are provided. The electronic device includes an imaging device configured to obtain an image of a subject, a light source including light-emitting elements configured to emit light in different directions, and a controller configured to determine a position of the subject and a distance to the subject in the image, and control a luminance of the light-emitting elements based on the position of the subject and the distance to the subject.
US10715736B2

An image capturing apparatus including an image capturing unit capable of moving its imaging direction and a sound input unit including a plurality of microphones, a sound source direction detecting unit which detects a sound source direction based on sound data from the sound input unit, a control unit which performs processing related to image capturing, and, a vibration detecting unit which detects a vibration due to a contact on a housing of the image capturing apparatus, wherein, in a case where a vibration due to a contact is detected, the sound source direction detecting unit detects a direction of sound due to the contact, the control unit estimates a position of the contact on the housing, and the control unit sets the imaging direction of the image capturing unit to a direction based on the estimated position.
US10715735B2

There are provided a head-mounted display, a display control method, and a program for changing the position of the image of an object near the optical axis of a camera in an image displayed on a display section. A camera control section controls the direction of the optical axis of the camera capturing an image of what is ahead of the display section disposed in front of the user's eyes. A display control section causes the display section to display a partial image cut out from the image captured by the camera, the partial image constituting a portion corresponding to the optical axis direction of the camera.
US10715731B1

Methods, systems, and devices for image processing are described. The method includes detecting blurring in one or more images from a stream of images captured by a camera based on monitoring the stream of images, identifying a level of zoom based on detecting the blurring, selecting an autofocus configuration from a set of autofocus configurations based on the identified level of zoom, and performing an autofocus operation using the selected autofocus configuration.
US10715730B1

Various embodiments include a damper arrangement that may be used to dampen motions of a dynamic component. In some embodiments, the damper arrangement may be used in a camera module that includes a stationary component and a dynamic component. For instance, the dynamic component may hold a lens such that the lens moves together with the dynamic component. In various examples, the damper arrangement may include an interface member that extends from the stationary component or the dynamic component to at least partially into a viscoelastic material within a pocket configured in the stationary component, the dynamic component, or both. The interface member may be configured to traverse within the viscoelastic material to dampen motion of the dynamic component, for example, during operation of a lens actuator to move the dynamic component along an optical axis of the lens.
US10715724B2

A system that facilitates collecting data is described herein. The system includes a digital camera that is configured to capture images in a visible light spectrum and a near-infrared camera that is configured to capture near infrared images, wherein a field of view of the digital camera and the field of view of the near-infrared camera are substantially similar. The system further includes a trigger component that is configured to cause the digital camera and the near-infrared camera to capture images at a substantially similar point in time, and also includes a mounting mechanism that facilitates mounting the digital camera and the near-infrared camera to an automobile.
US10715723B2

An image processing apparatus includes at least one processor configured to execute processes including: calculating a misalignment amount of each pixel of a reference image relative to a standard image; and combining the reference image converted based on the calculated amount with the standard image. The calculating includes: calculating a projection conversion matrix for each of planes with different misalignment amounts in the reference image; generating a plane map in which the plane to which each pixel of the reference image belongs and the matrix to be applied to each plane are selected based on a difference value between the standard image and each of the alignment images converted from the reference image by using each calculated matrix; suppressing a selection error of the matrix; and calculating the misalignment amount for each of the planes based on the plane map in which the selection error of the matrix is suppressed.
US10715722B2

A display device is disclosed. The display device according to various exemplary embodiments includes a display, a communicator configured to communicate with an external device, a first nearby device, and a second nearby device, and a processor configured to control the communicator to transmit each of a first image which is received from the external device and a second image which is received from the first nearby device to the second nearby device, and control the display to display at least one of the first image and the second image.
US10715712B2

Embodiments of the preset invention include a barcode reader that comprises a housing having a handgrip portion and an upper body portion, a first printed circuit board (PCB) extending into the upper body portion, and an imaging module positioned within the upper body portion. In this instance, the imaging module includes an imaging system having an imager and an imaging lens assembly, the imaging system having a field of view with a central imaging axis passing through a window in the upper body portion and lying on a horizontal plane. The imaging module further includes an aiming light system configured to emit an aiming light pattern, the aiming light system offset from the imaging system along the horizontal plane. Furthermore, the components of the barcode reader are arranged such that the first PCB is positioned at an oblique angle relative to the central imaging axis.
US10715709B2

An imaging device has a lens holding member; a base member for holding the lens holding member; and a substrate to which the base member is secured. The lens holding member holds at least one lens. The base member has a contact surface that is perpendicular to an optical axis of the lens, and contacts an end face of the lens holding member in a state wherein the lens holding member is held; and an opening portion through which passes the optical axis of the lens, provided in the contact surface. The substrate has an imaging element on which light that has passed through the lens and through the opening portion of the base member is incident.
US10715698B1

A system and a method for processing documents using mobile payment to instantly activate privilege are provided with a mobile device, a cloud server, a proxy server and a document-processing device connected to a network. Users can hold the mobile device to approach the document-processing device to perform corresponding operation in generation of a setting of parameters. The cloud server acquires the setting of parameters through the network and transmits the setting of parameters to the proxy server in exchange for dedicated pictogram authentication information. The document-processing device provides pictogram information according to the pictogram authentication information. The mobile device performs and completes a payment procedure according to the pictogram information. The cloud server then instantly transmits an execution command to drive the document-processing device so as to enhance operational convenience and efficiency.
US10715696B2

An information processing apparatus capable of communicating with an image forming apparatus via a network, the image forming apparatus being capable of communicating via facsimile, includes a second controller circuit that receives image data transmitted via facsimile, facsimile transmission information including information of one or more items about the facsimile transmission, and additional information including additional information of one or more items about the image data, in association with each other, from the image forming apparatus via the network, and determines a storage area to store the image data based on information of at least one item out of the information of the one or more items included in the facsimile transmission information and/or based on information of at least one item out of the information of the one or more items included in the additional information.
US10715685B2

According to an embodiment of this invention, there is provided a method in which even if, in an environment where an information processing apparatus and an image processing apparatus are connected by USB, communication from the information processing apparatus is terminated midway, processing on the image processing apparatus side is terminated. In this method, an HTTP communication module transmits, to the image processing apparatus, request information including information for identifying communication with the image processing apparatus. If response information, from the image processing apparatus, corresponding to the request information does not match the transmitted request information, the HTTP communication module transmits an instruction to operate the image processing apparatus in a status in which it is possible to transmit the response information.
US10715683B2

In some examples, print quality diagnosis may include aligning corresponding characters between a scanned image of a printed physical medium aligned to a master image associated with generation of the printed physical medium to generate a common mask. Print quality diagnosis may further include determining, for each character of the scanned image, an average value associated with pixels within the common mask, and determining, for each corresponding character of the master image, the average value associated with pixels within the common mask. Further, print quality diagnosis may include determining, for each character of the common mask, a metric between the average values associated with the corresponding characters in the scanned and master images.
US10715681B2

A method is provided for performing RAN-usage-based tracking in a wireless core network. The method includes obtaining a plan code for a communication device connecting to a radio access network (RAN); associating, based on the plan code, the communication device with a RAN-usage-based plan; and reporting, after the associating, a tracking instance of RAN usage by the communication device.
US10715680B2

Embodiments of this application provide a charging method. The method includes that a session management function determines, a data flow within a protocol data unit, PDU, session and a charging key corresponding to the data flow within the PDU session, wherein a plurality of user plane functions are involved in the PDU session. For each of the plurality of user plane functions, the session management function sends to an online charging system, a quota request for a charging key without available quota for the UPF.
US10715668B1

Techniques are described for generating metric(s) that predict survey score(s) for a service session. Model(s) may be trained, through supervised or unsupervised machine learning, using training data such as communications from previous service sessions between service representative(s) and individual(s), and survey scores provided by the serviced individual to rate the session on one or more criteria (e.g., survey questions). The model(s) may be trained to output, based on an input session record, metric(s) that each correspond to a survey score that would have been provided by the individual had they completed the survey. The model may be a concatenated model that combines a language model output from a language classifier recurrent neural network, and an acoustic model output from an acoustic feature layer convolutional neural network. Individuals can be clustered according to the metric(s) and/or other factors, and the cluster(s) can be employed for routing incoming service requests.
US10715667B2

Systems and methods of managing customer journeys are implemented using one or more processors in a computing system. Each journey may comprise a succession of interactions at interaction points such as telephone conversations, responses to an interactive voice response “IVR” system and viewing a web page. Customer journey scores are determined for customers at one or more interaction points along the customer journey and the customer journey score is used to determine whether and when an intervention should take place. Models for determining customer journey scores may be created for a set of customers based on one or both of subjective and objective data relating to a subset of the set of customers that have made some or part of the journey, e.g. customers that have responded to polls. An intervention may take place during the journey or after completion of the journey.
US10715665B1

Methods, systems, and apparatus, including computer programs encoded on computer storage media, for a coordinating callers with customer service representatives is described. One of the methods includes identifying a number of callers. The method also includes dynamically adjusting a number of customer service representatives based on the number of callers.
US10715663B2

As “call centers” continue to be replaced with omnichannel contact centers, managing a plurality of simultaneous media channels becomes more important. Contacting a customer on one channel and, at the customer or agent's request, initiating a second channel that delays the interaction will having limited acceptance and, in some jurisdictions, may be illegal. By nailing-up an agent half-communication with a number of channels, agents maintain a perpetual connection comprising an agent half-communication to a server, such as one serving as a media anchor point, share point, etc. The customer half-connection is established to a server and the agent, already connected, is joined. As a result, the customer experiences a greatly reduced delay between the time they answer and being greeted by an agent, regardless of the media type or types utilized.
US10715658B1

Disclosed is a telephone call-back device that can provide a means for the recipient of a robocall incoming phone call to take action. The telephone call-back device includes an activation device, a call source utility, and a call-back utility. The activation device is a button or switch that a user can activate when they receive a robocall. Once the activation device is activated, the call source utility identifies a source phone number of the robocall incoming phone call. The call-back utility initiates one or more robo call-back outgoing phone calls to be sent to the source phone number. The call-back utility can be programmed to try to send many robo call-back outgoing phone calls to the source phone number to try to swamp the phone number with robo call-back outgoing phone calls.
US10715646B2

The present invention relates to the innovation of an ordinary openable smartphone, so that while maintaining its electronic functionality, it can also internally integrate the wallet and keychain functions. Thanks to a structure with the wallet function, consisting of a multi compartment pocket able to expand when opening the smartphone and to retreat when closing. And thanks to a further structure, there is the keychain function, consisting of small flexible hooks made with a knurled system that blocks the keys.The wallet and keychain functions will be accessible by pushing an external button that opens the smartphone into two parts, like a book.
US10715643B2

A cloud computing system includes computing nodes that execute a shared application and/or service accessible by client computing devices over a network. A resilience multiplexer is configured to: receive signals (e.g., from a cloud controller, registry service, error handler, and/or failover service) indicative of potential problems with components of the system and/or network; identify a rule to be executed to determine how to respond to the potential problem, based on attributes of the received signal including which component generated it and what information is included in/otherwise associated with it, and other network-related data; execute the identified rule to determine whether a failover is or might be needed; if a failover is needed, selectively trigger a failover sequence; and if a failover only might be needed, initiate a resilience mode. In resilience mode, information regarding the potential problem is communicated to other components, without immediately initiating a failover sequence.
US10715628B2

The present document discloses an attribute operating method and device. In the above method, receiving a request message from a sending end, herein, parameter information carried in the request message includes: operating indication information, a resource address to be operated, an information type to be operated, and an information content to be operated; determining to operate on an attribute according to the operation indication information and the information type; and executing an operation corresponding to the attribute by using the resource address and the information content. On the basis of the technical solution provided by the present document, the execution of any attribute operation can be implemented without re-creating resources.
US10715623B2

Methods, systems and computer program products for enhanced storage clients. An interface for using a storage service is provided. The interface for each storage service of a plurality of storage services can be implemented within a storage client. A cache can be integrated within the storage client for reducing a number of accesses to a storage service of the plurality of storage services. A compression method in the storage client can reduce a size of data objects. An encryption method in the storage client can preserve data privacy. An application can select at least one storage service of the plurality of storage services and use the at least one storage service via the storage client.
US10715618B2

A network node includes a processor programmed to parse at least a portion of an input block having a plurality of segments, determine whether at least one of the plurality of segments matches a segment stored in a history buffer, and predict a compressibility of the input block based at least in part on whether at least one of the plurality of segments matches a segment stored in the history buffer.
US10715609B2

The embodiments set forth a technique for dynamically adjusting a manner in which notifications are output on a computing device. According to some embodiments, a technique can include (1) identifying that at least one different computing device satisfies a physical proximity threshold relative to the computing device, (2) determining that the at least one different computing device is included in a list of known computing devices associated with the computing device, (3) determining, based on a configuration associated with the at least one computing device, that the at least one different computing device is associated with a respective notification profile maintained by the computing device, and (4) activating the respective notification profile at the computing device to adjust the manner in which notifications are output by the computing device.
US10715599B2

A status of an Internet of Things (IoT) device included in a local area cloud is identified. The local area cloud includes IoT devices that are connected in a wireless local area network (WLAN), and one IoT device functions as a leader of the local area cloud. A cloud server associated with the IoT device is identified and information identifying the status is forwarded to the cloud server via a wireless wide area network (WWAN). The cloud server selects an action to be performed by the IoT device and forwards data identifying the action. The leader receives and distributes information identifying the action to the IoT device via the local area cloud. The action may include actions by multiple IoT devices in the local area cloud or IoT devices included in multiple local area clouds. A user may input data to control the cloud server.
US10715595B2

A method may comprise monitoring files (files, folders, documents of any type) to be sent to a remote storage to identify those that belong to selected file types and extracting metadata from those that belong to the selected file type(s), which may then be transcoded. Identifiers of the transcoded files and corresponding extracted metadata may be sent to a storage database. The transcoded files may be sent to be stored in the remote storage such that, upon receiving a file request and at least one criterion, the remote storage searches the database to find identifier(s) of the transcoded file(s) whose extracted metadata satisfies the criterion. Responsive to the received file request, one or more transcoded files may be made available whose identifier(s) were found during the search of the database. Alternatively or in addition, links to the transcoded files that correspond to found identifier(s) may be made available.
US10715589B2

The present invention discloses a data stream distribution method and apparatus. In the method, a load balancer may access data in a data stream according to an instruction in a distribution rule that is sent by an application server according to an interface protocol or configured on the load balancer according to an interface protocol; determine, according to a keyword generated according to the accessed data, an application server that processes the data stream; and send the data stream to the determined application server. Therefore, the load balancer may access the data in the data stream according to an instruction in a common distribution rule, to distribute the data stream, thereby reducing complexity of data stream distribution performed by the load balancer.
US10715587B2

A networked computational architecture for provisioning of virtualized computational resources. The architecture is accessible by a client application run on a client device. The architecture includes a hardware layer having a plurality of server devices, each server device having at least one physical processor having a local memory. A resource controller is provided and operable to allocate a plurality of server devices to a client application for data processing and to assign control information to the client application. The control information specifies the required allocation of a data processing workload to each server device allocated to the client application. The architecture is configured such that client applications send the data processing workload directly to each server in accordance with the control information. Thus, a networked architecture is load balanced indirectly without requiring a load balancer to be located in the data path between the client and the server.
US10715586B2

A method, computer system, and computer program product for a standalone demonstration of an application. Requests sent from the application running on a browser to a server data processing system are detected. Responses received from the server data processing system for the requests sent from the application are detected. The requests and the responses for the application are stored in a data structure. The requests and the responses enable simulating the server data processing system to perform the standalone demonstration of the application running on the browser on a client data processing system using the data structure without communicating with the server data processing system.
US10715584B2

Techniques for multiuser application platform are described. Generally, a multiuser application allow interaction by multiple different users with a single executing instance of the application. Implementations include a multiuser operating system and a multiuser application programming interface that enable interaction by multiple users with an executing instance of a multiuser application.
US10715578B2

The disclosure proposes a projector system and a projector setting method. The projector system includes: a plurality of projectors including a first projector and at least one second projector, wherein the first projector is connected to the at least one second projector via a network. The first projector receives a plurality of set values and stores the set values as a configuration. The first projector acquires an Internet Protocol address corresponding to the at least one second projector. The first projector receives a copy command, and transmits the configuration to the at least one second projector according to the Internet Protocol address of the at least one second projector. The at least one second projector performs a setting operation according to the configuration. The projector setting method suitable for the projector system. In the disclosure, the configuration can be copied between a plurality of projectors faster and more conveniently.
US10715577B2

The disclosure herein describes a server-side system that dynamically enhances user experience on a remoting client device. During operation, the system monitors user inputs on the client device. When a user input involving a predetermined interaction between the user and the GUI on the client device is detected, the system alters parameters of frame encoding based on the user interaction. Frame updates transmitted to the client device during the user interaction are encoded with the altered encoding method to improve user experience. Once the user interaction is ended, the system reverts back to the normal encoding method.
US10715576B2

An apparatus is provided for estimating one or more quality of experience (QoE) parameters associated with a specific terminal. The apparatus includes a traffic processor configured to acquire a plurality of transactions for providing multimedia content to a specific terminal. At least one of such transactions is a secured transaction. The apparatus further includes a QoE parameter estimator configured to detect a quality level variation event based on the transactions and the sizes of the transactions, and to estimate one or more QoE parameters based on the detection of the quality level variation event.
US10715571B2

A media processing method and apparatus for adaptive streaming are provided. In the method, a Media Presentation (MP) timeline alignment event message carried in a media segment is acquired; an aligned media segment is determined according to the MP timeline alignment event message, where the aligned media segment is a media segment of which a Media Presentation Time (MPT) in an MP timeline is aligned to an external timeline; and one or more MPTs of one or more media segments in an MP timeline alignment event after a mapping between the MP timeline and the external timeline has been established are calculated.
US10715557B2

System and method for establishing secure conference calls. In one example system, a central conference call server establishes point-to-point connections with accessory devices comprising a secure element and connected to corresponding participant devices. The conference call server includes an interface to a plurality of secure elements configured to perform scrambling and unscrambling of media signals communicated to and from the accessory devices. In another example, one of the participant devices operates as the central conference call server. In other examples, participant devices communicate on a conference call via point-to-point connections between all accessory devices connected to the participant devices. The accessory devices include secure elements for decryption and encryption of media signals communicated between the accessory devices.
US10715556B2

In one example, there is disclosed a domain master for a data exchange layer (DXL), including: a hardware platform configured to execute instructions; and one or more memories having stored thereon instructions to instruct the hardware platform to: communicatively couple to the DXL; provide a DXL messaging service including native support for request-response (1:1) transactions via a publish-subscribe (1:N, N>1) fabric; provide DXL domain master services for a DXL domain; and provide DXL-based real-time policy and task distribution for DXL endpoints of the DXL domain.
US10715547B2

A method for detecting a man-in-the-middle attack against communications between a client device and a specific remote end point over a network, the method using probe software installed on the client device, the method comprising the probe software sending a connection initiation request from the client device over the network, directed to the remote end point, to at least partially initiate a secure network connection between the remote end point and the client device, receiving at the client device encryption credentials sent to the client device in response to the connection initiation request, the probe software comparing the received encryption credentials with expected encryption credentials for the remote end point, and the probe software determining that a man-in-the-middle attack is present if the received encryption credentials do no match the expected encryption credentials.
US10715542B1

An electronic device comprising one or more processors; a storage medium communicatively coupled to the one or more processors, the storage medium having stored thereon logic that, upon execution by the one or more processors, performs operations comprising: (1) receiving, via a first electrical signal, application data from a mobile agent installed on a mobile device, (2) querying, via a second electrical signal, a database for a risk level of each of one or more applications of the mobile device listed in the application data, and (3) determining a threat level for the mobile device based on one or more of: (i) the risk level of at least one of the one or more applications, (ii) usage information of the at least one of the one or more applications, or (iii) configuration information of the mobile device is shown.
US10715538B2

A networked computer system enables one or more transactions to be executed securely. An initiator sends a service request to a control server. The control server creates or selects an existing transaction server for the sole purpose of executing the transaction requested by the service request. If the transaction server is pre-existing, it may be in an inaccessible state and then be made accessible in response to receiving the service request. The control server informs the initiator of the created transaction server. The initiator (and possibly one or more other authorized participants) engages in the transaction with the transaction server, independently of the control server. The transaction server terminates, such as upon completion of the transaction, the expiration of a timeout period, or satisfaction of another server termination criterion. The use of such a one-time transaction server increases security, privacy, and anonymity.
US10715536B2

Disclosed herein is a method and system to determine whether a payment terminal has been tampered with based on a comparison of attestation data received from the payment terminal, for example in an offline mode when an otherwise secure remote server cannot be reached. If the determination yields that the request has been approved, the terminal generates an attestation ticket having one or more validity conditions, wherein the validity conditions include expiration time that indicates the time after which the attestation ticket becomes invalid. The attestation ticket can be used as long as it is valid or until another trigger causes the ticket to be invalidated or regenerated.
US10715535B1

Provided herein are identification of a distributed denial of service attack and automatic implementation of preventive measures to halt the distributed denial of service attack. At substantially the same time as the attack, valid users/customers (e.g., devices) are provided quality of service and continued access to a website experiencing the distributed denial of service attack. Further, service to temporary or unknown users (e.g., devices) with public access to the website is suspended during the duration of the distributed denial of service attack.
US10715523B2

Non-limiting examples of the present disclosure describe generation of a default signed-in state for subsequent authenticated access to a service. Identity provider data for a service is retrieved from any number of identity providers (e.g. a first identity provider and second identity provider). The first and second identity data is evaluated for generation of a default signed-in state to the service. An evaluation determines that at least one of the first identity data and the second identity data comprises data indicating that a user account is signed-in to the service. Data representing the default signed-in state is generated based on a result of the evaluation. The data representing the default signed-in state comprises a selection of one of the first or second identity data that corresponds with the user account that is signed-in to the service. A representation of the service in the default signed-in state may be surfaced.
US10715516B1

Methods and apparatuses are described for time-series database user authentication and access control. A server computing device receives a request from a remote computing device to access a time-series database coupled to the server computing device, wherein the request includes one or more authentication credentials associated with the remote computing device. The server computing device validates the one or more authentication credentials associated with the remote computing device. The server computing device connects to an access control layer associated with the time-series database. The access control layer authorizes the remote computing device to access data in the time-series database based upon an access profile associated with the validated authentication credentials. The server computing device retrieves data from the time-series database in response to the request.
US10715511B2

Secure subscription based vehicle data services are provided. In one embodiment, a device comprises: a non-volatile memory comprising an embedded public key (EPK) that comprises a public key of a public-private key pair associated with a data service system not onboard the vehicle; a protocol that initiates a communication session that includes a session validation sequence that causes a processor to transmit a session request message and validate an authenticity of a session reply request using the EPK; the protocol includes a session initiation sequence that causes the processor to: transmit an initiation request message to the data service system that includes a key derivation key, and apply the key derivation key to a key derivation function to generate a message authentication key. The processor authenticates uplink messages exchanged with a host data service using the message authentication key.
US10715510B2

Methods and systems for securely delivering notifications from remote applications to client devices are described herein. A computing device may listen for notifications from a remote application and receive notification data from the remote application. The computing device may select a notification service for delivery of the notification data to the client device. The computing device may send, to the selected notification service, at least a portion of the notification data for delivery to the client device. At least a portion of the notification data may be encrypted prior to sending to the selected notification service.
US10715508B2

In one embodiment, a method for secure computation, includes receiving in a server, over a communication channel from a device external to the server a request to perform a modular exponentiation operation in which an exponent of the operation comprises a secret value, wherein the secret value is not provided to the server, and at least two parameters that encode the secret value in accordance with a polynomial or matrix homomorphic encryption of the secret value computed by the device, and performing in the server, in response to the request, a homomorphic exponentiation using the at least two parameters received from the device without decrypting the secret value in the server, so as to generate an output that is indicative of a result of the modular exponentiation operation.
US10715499B2

A device for storing key-value (KV) data includes non-volatile memory and a controller. The controller includes a decapsulator and a KV mapper to receive network data communicated over a network, for example using a layer 2 protocol. The decapsulator is configured to decapsulate a payload from the network data, the payload including a key-value pair and first information. The KV mapper is configured to receive the key-value pair and the first information decapsulated from the network data, and determine, based on the received key-value pair and first information, a first location of the non-volatile memory. The controller is further configured to store KV data corresponding to the key-value pair at the first location of the non-volatile memory based on the first information.
US10715497B1

Techniques are described for generating and executing a digital safety box to provide secure communication between two computing devices. The digital safety box comprises an encryption key, and an executable code that defines a content holder and performs encryption of content stored in the content holder with the encryption key for secure communication. A receiver computing device generates the digital safety box including the executable code and the encryption key for a requesting sender computing device. The digital safety box may be one-time use and include a unique encryption key and a unique executable code. Upon receiving the digital safety box, the sender computing device executes the executable code of the digital safety box as an application that enables the sender computing device to store content in the defined content holder, encrypt the data with the encryption key, and generate a sealed digital safety box including the encrypted content.
US10715496B2

In one embodiment, a computer implemented method provides a client computing device network access to a private network by a network traffic manager, and the method includes: obtaining context parameters related to a context of the client computing device; selecting as a function of the context parameters one or more policies as selected policies, wherein each policy is associated with one or more network entitlement rules defining network access rules to a networking device or an application in the private network according to the policy; retrieving the one or more network entitlement rules associated with the selected policies; and providing the network traffic manager with the one or more network entitlement rules, thereby providing the client computing device the network access.
US10715493B1

Enterprise users' mobile devices typically access the Internet without being protected by the enterprise's network security policy, which exposes the enterprise network to Internet-mediated attack by malicious actors. This is because the conventional approach to protecting the mobile devices and associated enterprise network is to tunnel all of the devices' Internet communications to the enterprise network, which is very inefficient since typically only a very small percentage of Internet communications originating from an enterprise's mobile devices are communicating with Internet hosts that are associated with threats. In the present disclosure, the mobile device efficiently identifies which communications are associated with Internet threats, and tunnels only such identified traffic to the enterprise network, where actions may be taken to protect the enterprise network.
US10715491B2

Techniques for Diameter security with next generation firewall are disclosed. In some embodiments, a system/process/computer program product for Diameter security with next generation firewall includes monitoring Diameter protocol traffic on a service provider network at a security platform; and filtering the Diameter protocol traffic at the security platform based on a security policy.
US10715473B2

Provided are systems, methods, and media for optimized processing of message responses from multiple email recipients. An example method includes receiving, by a message exchange system, an email message from a sender that is to be transmitted to a plurality of recipients. The method includes receiving, by the message exchange system, a number of commitment messages from one or more recipients of the plurality of recipients. The method includes transmitting by the message exchange system, in response to detecting that the number of received commitment messages is equal to a requested number of responses, a first alert to a subset of recipients of the plurality of recipients indicating that the subset of recipients do not need to respond to the email message, in which the subset of recipients are the recipients who did not transmit a commitment message to the message exchange system.
US10715470B1

Techniques for detecting spam accounts in a system are described. When a system creates a user profile, the system may ingest a blocked communications list. The system may determine how many times each blocked communications number represented in the ingested blocked communications list is included in blocked communications lists of various users of the system. If a blocked communications number represented in the ingested blocked communications list is included in at least a threshold number of other blocked communications lists, the system may mark the communications number as spam at a system level and engage in appropriate mitigation techniques (e.g., throttle the phone numbers activity, disable the phone number's ability to communicate with system devices, etc.).
US10715468B2

A mechanism is described for dynamically facilitating tracking of targets and generating and communicating of messages at computing devices according to one embodiment. An apparatus of embodiments, as described herein, includes one or more capturing/sensing components to facilitate seeking of the apparatus, where the apparatus is associated with a user, and recognition/transformation logic to recognize the apparatus. The apparatus may further include command and data analysis logic to analyze a command received at the apparatus from the user, where the command indicates sending a message to the apparatus. The apparatus may further include message generation and preparation logic to generate the message based on the analysis of the command, and communication/compatibility logic to communicate the message.
US10715457B2

Methods and systems of managing computer cloud resources, including at least one database, at least one server configured to, act as an orchestration site, wherein the orchestration site is configured to receive at least one cloud resource management plan from at least one user and store the at least one plan in the at least one database and act as an orchestration manager. The orchestration manager is configured to retrieve the at least one plan from the at least one database and execute the plan with at least one site controller.
US10715456B2

This application describes a network device, a controller, a queue management method, and a traffic management chip. The method may be applied to a traffic management chip that uses an HQoS technology, and can include receiving a queue management instruction sent by a controller, where the queue management instruction includes an identifier of a first scheduler and an identifier of a first queue, and the first scheduler is one of multiple first-level schedulers. The method may also include controlling, according to the queue management instruction, scheduling of the first queue by the first scheduler, where a queue scheduled by the first scheduler belongs to a queue resource pool of the TM chip, and the queue resource pool includes at least one to-be-allocated queue. In this application, decoupling between queue allocation and the first-level schedulers is implemented, flexibility of queue allocation is improved, and utilization of queue resources is improved.
US10715454B2

In a general aspect, a method for data communication over a data channel on a data path between a first node and a second node includes maintaining data characterizing one or more current or previous data communication connections traversing the data channel and initiating a new data communication connection between the first node and the second node including configuring the new data communication connection at least in part according to the maintained data.
US10715452B2

This disclosure describes systems, devices, methods and computer readable media for enhanced network communication for use in higher performance applications including storage, high performance computing (HPC) and Ethernet-based fabric interconnects. In some embodiments, a network controller may include a transmitter circuit configured to transmit packets on a plurality of virtual lanes (VLs), the VLs associated with a defined VL priority and an allocated share of network bandwidth. The network controller may also include a bandwidth monitor module configured to measure bandwidth consumed by the packets and an arbiter module configured to adjust the VL priority based on a comparison of the measured bandwidth to the allocated share of network bandwidth. The transmitter circuit may be further configured to transmit the packets based on the adjusted VL priority.
US10715442B2

In an embodiment, header information of messages is altered to specify a window within which to receive information, so that the messages sent by a remote device will be sent at a rate that a network can receive messages. The sending of acknowledgements of messages are paced to control window growth. Bandwidth is allocated to a plurality of flows such that the satisfied flows require less bandwidth than an amount of bandwidth allocated to each unsatisfied flow.
US10715438B2

An access point that provides link aggregation is described. During operation, this access point receives a message that may include a Dynamic Host Configuration Protocol (DHCP) response with an Internet protocol (IP) address of a gateway for an electronic device to access a network and a media access control (MAC) address of the electronic device. Based on the MAC address and/or at least a characteristic of the electronic device (such as a configuration, a capability and/or an operating system of the electronic device), the access point may determine a different IP address of another gateway for the electronic device to access the network. Moreover, the access point may modify the DHCP response by substituting the IP address of the other gateway for the IP address of gateway in a modified DHCP response. Next, the access point provides the modified DHCP response to the electronic device.
US10715437B2

Examples may include an apparatus having a packet receiver to receive a packet, the packet including a packet header having a deadline and a destination network node. The apparatus includes a routing table including a current latency for a path to the destination network node for the packet. The apparatus further includes a reprioritization component to get the deadline for delivery of the packet to the destination network node, to set a remaining time for the packet to the deadline minus a current time, to subtract the current latency from the remaining time when the packet is to be routed, and to assign the packet to one of a plurality of deadline bins based at least in part on the remaining time, each deadline bin associated with one of a plurality of transmit queues, the plurality of deadline bins arranged in a deadline priority order from a highest priority to a lowest priority. The apparatus also includes a packet transmitter to transmit packets from the plurality of transmit queues, the plurality of transmit queues being accessed in the deadline priority order.
US10715436B2

Systems and methods are described for effectively managing and maintaining a communication network by monitoring communications to detect a loop condition, and effectively route the communication to one or more destinations known to reduce or eliminate the occurrence of a looping condition. In one embodiment one or more computing devices may be configured to detect or assign an identifier to an incoming network communication, retrieve routing information from a routing database identifying one or more destinations to route the communication. The one or more computing devices may be further configured to compare the routing information with the identifier to determine an appropriate destination to route the communication.
US10715435B2

Implementations of a routing tier for highly-available applications on a multi-tenant Platform-as-a-Service (PaaS) system are disclosed. A method of the disclosure includes receiving, from a broker of a multi-tenant PaaS system, information related to a load balancer gear of an application running on the multi-tenant PaaS system. The information includes endpoint information indicating a location of the load balancer gear, and cartridge information identifying one or more cartridges implemented on the load balancer gear. The method further includes updating a routing table in view of the endpoint information and the cartridge information, and causing traffic to be routed to the load balancer gear in view of the updated routing table. The load balancer gear directs traffic to one or more other gears of the application.
US10715434B2

A method of operating a transmitting apparatus in a multimedia system is provided. The method includes inputting at least one network layer packet, generating a link layer packet based on the at least one network layer packet, and transmitting the link layer packet, wherein the link layer packet includes a header including information indicating whether the link layer packet includes a single network layer packet and information indicating an identifier related to the at least one network layer packet.
US10715432B2

In one embodiment, a device is described, the device comprising a processor, a memory operative to store data used by the processor, a network interface operative to enable network communications with at least one other device, and a client executed by the processor, the client operative to utilize a first networking protocol to chain a request for information from the at least one other device and to send an information request packet via the network interface to the at least one other device, the information request packet comprising a request for information from the at least one other device, and a header of a second network protocol, in which a response to the request for information may be provided. Related devices, systems, and methods are also described.
US10715423B2

An operation method of a switch apparatus in an Ethernet-based vehicle network, includes: receiving a first frame including original data from an end node; generating a second frame including the original data; duplicating the original data to generate duplicated data; and generating a third frame including the duplicated data and an indicator indicating that the third frame includes the duplicated data.
US10715413B2

Systems and methods for associating sessions using (TCP packet-level) timestamps are provided. A collection of data packets received during one or more sessions within a time period may be retrieved. Each packet in the collection may be associated with a unique identifier of a respective session. A skew for a selected session within the time period may be determined based on a rate difference between a respective receiving device clock and a respective sending device clock of at least two data packets associated with the unique identifier of the selected session. The selected session may be associated with a computing device. An uptime may be calculated for each of the retrieved data packets based on the determined skew and respective timestamp information of the data packet. It may be identified as to whether each of the calculated uptimes matches a previously calculated uptime for a packet associated with a previous session or a session that has previously been associated with a selected session. A list of sessions associated with the computing device may be updated based on one or more identified matches between the respective calculated uptime and the previously calculated uptime.
US10715409B2

Methods and systems for determining whether to adjust a network path between two endpoints of a network connection or session are disclosed. In some aspects, a method includes receiving a performance indication for a first portion of a network path for a network connection, the first portion between a first node and a second node in the network path, receiving an indication of a geographic location of a third node in the network path, the indication included in a message from the second node, a path between the second node and the third node comprising a second portion of the network path, the second portion not including the first portion, generating a performance measurement for the network connection based on the performance indication and the indication of the geographic location of the third node and initiating an adjustment of the network connection based on the performance measurement.
US10715407B2

This disclosure describes systems, methods, and computer-readable media for optimizing data collection in a distributed environment by leveraging real-time and historical data collection performance statistics and server performance data. In some configurations, a computing device can be initially configured for data collection. In such configurations, the initial configuration can include preferred target servers for a particular task. The computing device can request batches of data from the preferred target servers, and process the information through a buffer. Techniques and technologies described herein collect the batches of data from servers as well as corresponding data collection statistics (e.g., server performance per task, server historical performance, etc.) and server performance data (e.g. server status).
US10715404B2

A slice changing device is disclosed including a circuitry configured to acquire, in a case where a condition for changing a slice is satisfied, a connection destination of a slice after change. The circuitry is further configured to notify a communication device that connects a terminal using a slice and a connection destination of a slice of the acquired connection destination, and to release a resource relating to a slice before change after notification by the notifying means, where a service which is used by the terminal is allocated to a slice, and in a case where a condition in which the slice is changed is satisfied, the service is allocated to a slice after change.
US10715401B2

In a synchronization system, the present invention provides an improved user interface through which a user can view and manage settings associated with the user's account in the synchronization system. In the preferred embodiment, a column is displayed for each electronic device associated with the user's account in the synchronization system. In each column is a visual representation of items (e.g., folders) that are (1) backed up, remotely accessible and/or synchronized in the synchronization system and (2) located on the electronic device associated with such column. For each item that is synchronized across multiple devices, all the visual representations of such item in the columns are aligned across a single row in the interface. In the preferred embodiment, there is an arrow, or other visual indicator, between the visual representations of such items to indicate that the items are synchronized.
US10715400B2

A method of remotely controlling a device at a location is provided. A dataset is received from each of a plurality of different locations, comprising at least one data value of at least one monitorable device at the respective location. Based on the dataset, a user interface can be generated, comprising a primary interface element having plurality of matrix positions mapped to a surface of a sphere. In the user interface, an interactive object icon is displayed which is representative of a monitorable device positioned at the respective matrix position. A scale of each interactive object icon is indicative of the data value of the said monitorable device. After receiving a user input at an interactive object icon, a processor retrieves and displays the data value of a monitorable device associated with the interactive object icon, and a device is controlled at the location to perform a physical function.
US10715392B2

The present disclosure provides for adaptive resource management in new radio operations that adapts a numerology including a subcarrier spacing and/or cyclic prefix for a user equipment (UE) traveling at a high speed. A base station may transmit via a plurality of remote radio heads (RRH) to a user equipment (UE) is moving along a high speed track. The base station may transmit, in a first time period, using a first numerology including a first subcarrier spacing and a first cyclic prefix ratio, a first transmission for the UE. The base station may transmit, in a subsequent time period, using a second numerology including a second subcarrier spacing and a second cyclic prefix ratio, a second transmission for the UE. At least one of the second subcarrier spacing is different than the first subcarrier spacing or the second cyclic prefix ratio is different than the first cyclic prefix ratio.
US10715388B2

The disclosure generally describes methods, software, and systems for using resources in the cloud. An integration flow (iFlow) is deployed as a resource by a cloud integration system. The resource is assigned by a container orchestration service to one or more pods. An iFlow definition that is mapped to the resource is copied into a corresponding pod by a pod sync agent. A unique label is assigned by the pod sync agent to each resource based on iFlows deployed into the pod. A service is created as an endpoint to the resource by the cloud integration system with a rule redirecting calls to the one or more pods containing the resource.
US10715375B2

A modulation device includes a mapping circuit configured to map information bits to signal points on a plurality of concentric rings, when a signal space arrangement in which the number of signal points on all of the plurality of rings is the same is used as a basis, reduce the number of signal points on an innermost ring or a plurality of rings from inner to outer rings from among the plurality of rings, generate a new ring outside the signal space arrangement used as the basis, and arrange, on the generated ring, signal points which achieve the same frequency utilization efficiency as that of the signal space arrangement used as the basis.
US10715372B2

The present invention discloses a method for obtaining information for a cyclic prefix (CP) in a wireless communication system by a terminal and a device for the same. Specifically, a method for obtaining information for a cyclic prefix (CP) in a wireless communication system by a terminal includes: detecting a specific synchronization signal received from a base station via a first symbol of a first subframe; detecting the specific synchronization signal received from the base station via a second symbol of a second subframe; and obtaining information for the CP applied to transmission of the specific synchronization signal based on an offset value between an index of the first symbol and an index of the second symbol.
US10715366B2

Embodiments include digital signal processing units, a transmitting device for a wireless communication system and methods of processing a composite time domain signal having a plurality of parallel and independent signals that collectively form a parallel communication. It is proposed a new waveform configuration suitable for 5G and that is able to reduce out-of-band (OOB) emissions which are received on a first time domain signal associated to a first sub-band where the OOB emissions originate from an OFDM time domain signal associated with a second sub-band adjacent to the first sub-band. The proposed solution is partly based on filtered-OFDM with the exception that sub-band filtering is not performed on all the samples of the stream of OFDM symbols. Instead, filtering is performed only, for each OFDM time domain signal, where transition occurs between consecutive OFDM symbols.
US10715363B1

An optical communication apparatus has an interface circuit that acquires transfer condition information including a bit rate and a channel spacing of an optical network, a processor that selects a modulation scheme in accordance with the transfer condition information and operates in the modulation scheme, wherein the processor is configured to select a first modulation scheme when the bit rate is greater than a first value in accordance with the channel spacing, and select a second modulation scheme when the bit rate is smaller than the first value, the second modulation scheme having a data transfer performance higher than the first modulation scheme.
US10715357B2

Selection of equalization coefficients to configure a communications link between a receiver in a host system and a transmitter in an optical or electrical communication module is performed by a management entity with access to management registers in the receiver and transmitter. Continuous modification of the selected equalization coefficients is enabled on the communications link after the communications link is established to handle varying operating conditions such as temperature and humidity.
US10715344B2

The invention relates, but is not limited, to mobile communications technology. The invention enables a user to use two separately operating electronic communications devices to communicate with one or more other electronic data processing and/or communication devices, where a first of the two communications devices associated with the user is configured to handle, e.g. receive and/or transmit, media of a different type to the media handled by a second of the two devices associated with said user. The method comprises establishing electronic communication of a first media type between a first electronic communication device of said user and a data processing device and establishing electronic communication of a second, different media type between a second electronic communication device of said same user and said data processing device. The data processing device may comprise a server such as a cloud based server. The first and second communications devices of a user may be associated with a same user log in account or different log in accounts of the same user. In one embodiment, the first electronic communication device of the user is used by said user for a video conference session and the second electronic communication device is used by said user for transmitting and/or receiving discrete media files such as, but not limited to, still images, text documents, SMS messages, etc. within the same video conference session. The invention allows discrete media data to be transmitted in parallel with video conferencing data within the same video conference session such that participants in the video conference session have access to both the video conferencing images and the discrete media files provided by one or more of the participants.
US10715343B1

Methods, systems, and computer-readable media for device monitoring for conference reservation cancellation are disclosed. A location value is associated with a reservation for a scheduled conference associated with a scheduled starting time and a scheduled ending time. A voice-capturing device is associated with the location value, and the voice-capturing device is configured to send voice input to a service provider environment over a network. Voice input is not received from the voice-capturing device within a duration of time between the scheduled starting time and the scheduled ending time. The reservation is canceled based on determining that the voice input is not received from the voice-capturing device within the duration of time between the scheduled starting time and the scheduled ending time.
US10715342B2

Methods and apparatuses to manage service user discovery and service launch object placement on a device. A method comprising: obtaining information to assist in identifying a portion of a user interface of a wireless device, the wireless device communicatively coupled to a network system over a wireless access network; determining a differentiating attribute of the identified portion of the user interface; obtaining one or more service launch objects for placement in the identified portion of the user interface; and sending configuration information to the wireless device over the wireless access network to assist the wireless device in placing the one or more service launch objects in the identified portion of the user interface.
US10715337B2

A conductor on glass security layer may be located within a printed circuit board (PCB) of a crypto adapter card or within a daughter card upon the crypto adapter card. The conductor on glass security layer includes a glass dielectric layer that remains intact in the absence of point force loading and shatters when a point load punctures or otherwise contacts the glass dielectric layer. The conductor on glass security layer also includes a conductive security trace upon the glass dielectric layer. A physical access attempt shatters a majority of the glass dielectric layer, which in turn fractures the security trace. A monitoring circuit that monitors the resistance of the conductive security trace detects the resultant open circuit or change in security trace resistance and initiates a tamper signal that which may be received by one or more computer system devices to respond to the unauthorized attempt of physical access.
US10715336B2

A method (400) of encrypting data at an electronic device (3) where the electronic device is associated with a key device (5). Each device is associated with an asymmetric cryptography pair, each pair including a first private key and a first public key. Respective second private and public keys may be determined based on the first private key, first public key and a deterministic key. A secret may be determined based on the second private and public keys. The data at the electronic device (3) may be encrypted using the determined secret or an encryption key that is based on the secret. Information indicative of the deterministic key may be sent to the key device (5) where the information may be stored.
US10715333B2

The present application relates to an apparatus and method of authenticating and verifying a message frame on a multi-master access bus with message broadcasting. Logic bus identifier, LID, are associated with each one of a several logical groups of nodes out of a plurality of nodes connected to the multi-master access bus. A key is assigned to each logical group. The keys assigned to different logical groups differ from each other. For message authentication, a logic bus identifier, LID is provided and a key associated with the logic bus identifier, LID, is retrieved. A cryptographic hash value, MAC, is generated using the retrieved key and based on at least the logic bus identifier, LID. A message frame is composed, which comprises the logic bus identifier, LID, and the cryptographic hash value, MAC. For message verification, a message frame is received, which comprises at least a logic bus identifier, LID, and a cryptographic hash value, MAC. A key is retrieved, which is associated with the logic bus identifier, LID, extracted from the frame. A cryptographic verification hash value, VAC, is generated using the retrieved key and based on at least the logic bus identifier, LID. The cryptographic verification hash value, VAC, and the cryptographic hash value, MAC, extracted from the frame are compared. The received message frame is forward for further processing as a legitimate message frame.
US10715325B2

A method for real-time-based transfer of data telegrams from a verified transmitter to a verified receiver without delays, wherein (a) each data telegram to be transferred from the transmitter to the receiver is provided with an additional data index, (b) each received data is stored in a memory, along with the associated additional data index, (c) after elapse of a predetermined time interval, or after transference of a defined number of data telegrams, the transmitter transfers a second time data telegram already transferred to the receiver which has an additional signature, and where the data telegram transferred the second time is additionally encrypted by the transmitter, and (d) after receiving the signed data telegram transferred the second time, the signed data telegram transferred the second time is compared with the corresponding data telegram stored in the memory to verify the transmitter, and where (e) steps a) to d) are repeated.
US10715312B2

Blockchain-based device authentication by a user device to enable a second device is disclosed to perform an action on a first device on behalf of a user linked to the user device, based on a command received from the second device. Authentication includes the steps of: (i) obtaining an indentity information associated with an identity document of the user; (ii) storing the identity information, and a set of credentials, with a blockchain to link the identity information with the set of credentials for the user; (iii) signing a first trust certificate by a user private key on the blockchain to obtain a first signed trust certificate; and (iv) signing a second trust certificate by the user private key on the blockchain to obtain a second signed trust certificate.
US10715306B2

A method and an apparatus for sending a service, a method and an apparatus for receiving a service, and a network system. The method for sending a service includes obtaining, by a transmit end device, an original data stream, inserting a quantity mark k into the original data stream, to generate a first data stream, where the quantity mark k is a quantity of first data units in the original data stream, and k is greater than or equal to 0, and sending the first data stream.
US10715301B2

Wireless communications systems and methods related to sharing a frequency-division duplexing (FDD) spectrum among multiple network operating entities. In one embodiment, a first wireless communication device communicates, with a second wireless communication device in a downlink (DL) frequency band, a reservation signal in a first channel sensing time slot of a frame to reserve a transmission time slot in the frame. The first wireless communication device communicates, in an uplink (UL) frequency band, an UL control signal in the first channel sensing time slot. The UL frequency band and the DL frequency band are shared by a plurality of network operating entities for frequency-division duplexing (FDD) communications. In another embodiment, a first wireless communication device communicates, in a first frequency band of a FDD network shared by a plurality of network operating entities, a reservation signal to reserve the first frequency band for time-division duplexing (TDD) communications.
US10715300B2

A demodulation reference signal (DMRS) indicating method, a DMRS receiving method, and an apparatus are described. A transmit end determines, from a plurality of groups of demodulation reference signal DMRS configuration information, DMRS configuration information corresponding to a current DMRS transmission scheme. The transmit end obtains DMRS indication information based on the DMRS configuration information, where each group of DMRS configuration information includes a plurality of pieces of DMRSs configuration information. The transmit end sends the DMRS indication information. The described method and the apparatus are implemented to match a plurality of New Radio (NR) scenarios. The described operations can satisfy a requirement for transmitting more layers of data and reduce indication overheads.
US10715296B2

Method and apparatus are provided to allocate a time and frequency resource of a resource request indicator (RRI) and to transmit an RRI. Codes are allocated for an RRI and other (such as non-RRI) uplink control signaling. The RRI and other uplink control signaling can be multiplexed in the same time and frequency resource, such as through multiplexing in a code division manner.
US10715294B2

In a wireless communication system, a control channel is required in order to use limited resources effectively. However, the control channel resource is part of the system overhead, and thus reduces the data channel resource used for data transmission. In the long term evolution (LTE) system based on OFDM, one sub frame the consists of fourteen OFDM symbols wherein a maximum of three OFDM symbols are used for the control channel resource and remaining eleven OFDM symbols are used for the data channel resource. Therefore, the quantity of energy that can be transmitted for the control channel resource is extremely limited compared to the data channel resource. For this reason, the coverage of the control channel becomes less than that of the data channel, and even if a user can successfully receive the data channel, reception failure of a control channel sometimes results in failure of data recovery. In the present invention, in order to expand the coverage of the control channel to at least the coverage of the data channel, the time resource of the transmission resource wherein the control channel is transmitted is expanded and allocated for sending and receiving the control channel. By way of methods for extending the time resource are provided a method wherein a plurality of sub frames are used to transmit one control channel, and a method wherein a part of a data channel is used for the control channel.
US10715293B2

A demodulation reference signal (DMRS) indication method includes: a base station allocating designated DMRS ports, numbers of layers and orthogonal cover code (OCC) lengths to a user equipment (UE) according to a DMRS configuration parameter indication table, wherein a plurality of DMRS configuration parameter indication entries with a plurality of OCC length combinations of at least two OCC lengths are recorded in the DMRS configuration parameter indication table; according to DMRS configuration parameter information allocated to the UE, generating corresponding DMRS indication information, and sending the DMRS indication information to a corresponding UE. Also disclosed are a base station, a UE and a DMRS indication system.
US10715291B2

In one exemplary embodiment, a method includes: inserting an indication of a cyclic prefix length into a transmission; and sending the transmission. In another exemplary embodiment, a method includes: receiving a transmission; and processing the received transmission to obtain an indication of a cyclic prefix length.
US10715288B2

An access point (AP) in a wireless local area network (WLAN) uses a protocol to determine frequency/time resource allocations of resource units (RUs) in parallel with data transfer to and from WLAN stations (STAs). The AP generates a sounding table associating STAs with RUs for uplink (UL) and downlink (DL). The AP processes the sounding table to create a channel map table and then the AP allocates particular RUs to particular STAs. The STAs then receive and transmit data from and to the AP over the allocated RUs. This approach achieves good throughput while reducing the use of signaling and pilot overhead associated with channel sounding. To avoid interruption of ongoing transmissions, a newly arriving STA is grouped and sounded with other STAs. The protocol includes a joint sounding and data epoch followed by a determination of the channel map table.
US10715278B2

A system and method for operating a wireless communication node. The system configures the node to receive a signal encoded by one or more codeword sets and configures the node to remap subpackets of the incoming signal for transmission over a second communication link. Incoming signals are parsed into subpackets, and the subpackets are encoded and remapped. The encoded and/or remapped subpackets are then transmitted over a communication link.
US10715277B2

Systems and methods presented herein enhance WiFi communications in a RF band where conflicting LTE signaling exists. In one embodiment, a system includes a processor operable to detect the WiFi communications between a UE and a wireless access point of a WiFi network, to identify errors in the WiFi communications, and to determine a periodicity of the errors based on the LTE signaling structure. The system also includes an encoder communicatively coupled to the processor and operable to encode the WiFi communications with error correction, and to change the error correction based on the periodicity of the errors in the WiFi communications.
US10715276B2

In some embodiments, a bandwidth constrained equalized transport (BCET) communication system comprises a transmitter that transmits a signal, a communication channel that transports the signal, and a receiver that receives the signal. The transmitter can comprise a pulse-shaping filter that intentionally introduces memory into the signal, and an error control code encoder that is a low-density parity-check (LDPC) error control code encoder. The error control encoder comprises code that is optimized based on the intentionally introduced memory into the signal, a code rate, a signal-to-noise ratio, and an equalizer structure in the receiver. In some embodiments, the communication system is bandwidth constrained, and the transmitted signal comprises an information rate that is higher than for an equivalent system without intentional introduction of the memory at the transmitter.
US10715271B1

A fiber optic system is provided including a first and second fiber optic assembly, each comprising a body defining a fiber routing volume and a plurality of fiber optic components disposed on the body. The first fiber optic assembly includes a first plurality of optical filters disposed within the first fiber routing volume. The first plurality of optical filters define a first plurality of dense wavelength division multiplexing (DWDM) channels, test channels, an express port, and an upgrade port. A second plurality of optical filters disposed within the second fiber routing volume. The second plurality of optical filters define a second group comprising a second plurality of DWDM channels. The test channels and the express port of the first fiber optic assembly are utilized for both the first fiber optic assembly and the second fiber optic assembly.
US10715268B2

In an embodiment, a method for determining the type of a mobile radio base station is provided. The method may include receiving a synchronization message comprising a mobile radio base station identifier, and determining the type of a mobile radio base station using a previously signaled and stored piece of mobile radio base station type determining information indicating a rule as to how the type of a mobile radio base station out of a plurality of types of a mobile radio base station can be derived from a mobile radio base station identifier and the received mobile radio base station identifier.
US10715267B2

A wireless communication device in a wireless system may generate a High Efficiency Physical Layer Convergence Procedure (PLCP) Protocol Data Unit (HE PPDU) frame including (i) an Orthogonal Frequency Division Multiplexing (OFDM) symbol including padding bits and (ii) an extension having a non-zero signal strength, and transmit the HE PPDU frame. A High Efficiency signal (HE-SIG) field of the transmitted HE PPDU frame may include an indication for a duration of the extension to avoid ambiguity of the extension. A communication device in a wireless system may receive an HE PPDU frame including (i) an OFDM symbol including padding bits, and (ii) an extension having a non-zero signal strength, and transmit an Acknowledgement frame a predetermined inter-frame space after an end of the HE PPDU frame. An HE-SIG field of the received HE PPDU may include an indication for duration of the extension to avoid ambiguity of the extension.
US10715266B2

To provide a technology of updating a broadcast station list capable of both shortening a searching time and deleting an unreceivable broadcast station.A broadcast receiver includes a processor and an associated memory configured to: control a tuner to scan a predetermined frequency band and search for a receivable broadcast station in the predetermined frequency band; and create a list including at least the receivable broadcast station by acquiring information of the receivable broadcast station. When there is a second receivable digital broadcast station at a frequency corresponding to a first digital broadcast station that already exists in the list when scanning, the processor omits acquisition of broadcast station information of the second digital broadcast station and uses broadcast station information of the first digital broadcast station that exists in the list as information of the second digital broadcast station.
US10715263B2

An information processing apparatus includes a memory, and a processor coupled to the memory and configured to obtain location information indicating locations of a wireless transmitter and a wireless receiver, simulate a first power of a first reception signal at the wireless receiver in a condition that a radio signal is transmitted from the wireless transmitter, identify a first probability distribution model in accordance with the first reception signal, identify a first parameter of the first probability distribution model in accordance with the first power and a propagation environment defined by the locations of the wireless transmitter and the wireless receiver indicated by the location information, and based on the first probability distribution model using the first parameter, simulate a second power of a second reception signal at around the wireless receiver.
US10715252B2

An energy-harvesting system capable of wireless communication is disclosed which includes a solar cell adapted to generate charge from incident light on the solar cell; an energy-harvesting circuit coupled to the solar cell, the energy-harvesting circuit adapted to convey charge from the solar cell to an energy reservoir; a data communication circuit adapted to encode data to be communicated by the solar cell by adjusting the voltage across the solar cell into at least two states including 1) an open circuit (OC) state, where the current through the solar cell is substantially zero, and 2) a maximum power point (MPP) state, where power (V×I) drawn from the solar cell is maximum, wherein the solar cell in response to the changes in its voltage and the incident light emits luminescent radiation with an intensity corresponding to the at least two states, thereby forming a wireless transmitter.
US10715249B2

If wavelength defragmentation is performed during the operation of an optical network, an instantaneous interruption of a network arises; consequently, data are lost; therefore, an optical network control method according to an exemplary aspect of the present invention includes monitoring a data volume of a client signal to be transmitted using a plurality of optical subcarriers; and performing synchronously, depending on a variation in the data volume, an optical subcarrier changing process of changing an active optical subcarrier, of the plurality of optical subcarriers, to be used for transmitting the client signal, and a remapping process of remapping the client signal onto an active optical subcarrier after having been changed.
US10715247B2

A receiver is presented, such that the receiver may be configured to receive transmissions in accordance with a continuous waveform and to relock quickly on a received transmission when the transmitter is switched or a change in the waveform parameters is made. The receiver may be configured to support reception of a shared channel and/or of a channel allocated for SCPC usage and may be modified while used (e.g., dynamic SCPC). In addition, a satellite communication system is presented, the satellite communication system comprising at least one receiver in accordance with the above-described receiver. The satellite communication system may be configured to utilize the receiver's characteristics for at least the purpose of achieving a highly efficient return link channel.
US10715241B2

A first apparatus may communicate with a user equipment through a first active beam. The first apparatus may determine that beam tracking is to be performed with the UE, including identifying a new beam for communication between the UE and the apparatus. The first apparatus may perform beam tracking with the UE based on the determination that beam tracking is to be performed. The first apparatus may communicate with the UE through a second active beam based on the beam tracking.
US10715227B2

A transmission method simultaneously transmitting a first modulated signal and a second modulated signal at a common frequency performs precoding on both signals using a fixed precoding matrix and regularly changes the phase of at least one of the signals, thereby improving received data signal quality for a reception device.
US10715226B2

An apparatus and a method for control signaling are disclosed. The method comprises communicating (402) with one or more user terminals utilising Time Division Duplexing, estimating (404) uplink precoder parameters for the one or more user terminals, the parameters comprising an uplink precoder matrix and a scaling factor and transmitting (406) the uplink precoder parameters utilising a downlink pilot signal and downlink control signalling.
US10715225B2

A method implemented in a first radio device (UE) for quality reporting of a radio channel (2) comprising: Determining a condition of the radio channel and entering a monitoring phase if the condition of the radio channel exhibits an invariance of statistics of the radio channel (810, 811), Receiving at least one data symbol via said radio channel during the monitoring phase (812), Determining a statistical characterization of the radio channel based on the received data symbol (813), and Reporting a quality of the radio channel (2) to a second radio device if the statistical characterization exceeds a predetermined threshold (814).
US10715214B2

Methods and apparatus to monitor a media presentation are disclosed. An example system includes a monitoring device to monitor a media presentation and generate research data identifying the media. A bridge device includes a housing dimensioned to receive the monitoring device, a receiver carried by the housing to receive a first audio signal via a wireless data connection from an audio source device using a wireless communication protocol, the first audio signal associated with the media. The bridge device includes an audio emitter to emit the audio signal for receipt by the monitoring device, and a transmitter to transmit the audio signal to an audio receiver device using the wireless communication protocol.
US10715210B1

There is a need for a mechanism that increases the UE's chance of properly receiving the NPSS and/or NSSS when frequency hopping is used for narrowband communications in the unlicensed frequency spectrum. The present disclosure provides a solution by transmitting the NPSS and NSSS using a synchronization signal repetition pattern in order to increase the detection probability for the DRS, so that synchronization and/or cell acquisition may be achieved with a reduced number of visits to the anchor channel, thereby reducing synchronization delay and increasing the QoS.
US10715202B2

The present disclosure is directed to an apparatus and method for cancelling self-interference caused by full-duplex communication. In a full-duplex communication device, the receiver will generally experience significant self-interference from the full-duplex communication device's own transmitter transmitting a strong outbound signal over the same channel that the receiver is to receive a weak inbound signal. The apparatus and method are configured to adjust a phase and gain of the outbound signal provided at the output of a power amplifier (PA) and inject the phase and gain adjusted outbound signal at the input of a low-noise amplifier (LNA) to cancel the interference from the outbound signal in the inbound signal.
US10715196B1

A general-purpose integrated circuit capable of scaling to meet the requirements of a beamforming system for a wide range of applications and benefit from economies of scale is disclosed. The integrated circuit includes a delay and phase correcting engine in order to reference the incoming data to a common array center and steering direction. It also includes a frequency channelization engine to perform phase-shift beamforming tasks effectively and/or frequency channelize the output data stream. A flexible reconfigurable routing logic can be included, which allows a multiplicity of operation modes, and generates a multiplicity of linear combinations of the input and internally generated data streams.
US10715182B2

Systems and methods are provided for decoding a codeword encoded by a linear block code. A method may comprise performing a hard decision decoding on a codeword, recording a number of flip(s) for each bit of the codeword, generating reliability information for each bit based on the number of flip(s) for each bit respectively, determining to switch to soft decision decoding according to a switching rule and performing a soft decision decoding on the codeword using the reliability information for each bit.
US10715138B1

An open drain driver circuit includes an output terminal, an input terminal, a first transistor, a second transistor, and a third transistor. The first transistor includes a first terminal coupled to the output terminal, and a second terminal coupled to a reference voltage source. The second transistor includes a first terminal coupled to a third terminal of the first transistor, a second terminal coupled to a power supply rail, and a third terminal coupled to the reference voltage source. The third transistor includes a first terminal coupled to the input terminal, a second terminal coupled to the reference voltage source, and a third terminal coupled to the third terminal of the first transistor.
US10715137B2

Devices, systems, and methods are provided for generating a high, dynamic voltage boost. An integrated circuit (IC) includes a driving circuit having a first stage and a second stage. The driving circuit is configured to provide an overdrive voltage. The IC also includes a charge pump circuit coupled between the first stage and the second stage. The charge pump circuit is configured generate a dynamic voltage greater than the overdrive voltage. The IC also includes a bootstrap circuit coupled to the charge pump circuit, configured to further dynamically boost the overdrive voltage of the driving circuit.
US10715120B2

A semiconductor apparatus includes a first voltage detection circuit configured to generate a first voltage detection signal in response to the voltage level of a first voltage, a current control signal and a second voltage detection signal; and a storage and output circuit configured to generate a power control signal and the current control signal in response to the voltage detection signal.
US10715115B2

Circuits and methods for balancing Bias Temperature Instability (BTI) are disclosed. An inverter circuit comprises an inverter input node configured to receive an inverter input signal, wherein the inverter input node is coupled to gates of an inverter pair, wherein the inverter pair includes an inverter pair n-type metal-oxide-semiconductor (NMOS) transistor and an inverter pair p-type metal-oxide-semiconductor (PMOS) transistor, an inverter output node configured to provide an inverter output signal, wherein the inverter output signal is an inversion of the inverter input signal, and at least one balancing transistor configured to balance a voltage at a source of the inverter pair PMOS, a source of the inverter pair NMOS, or any combination thereof.
US10715112B2

A filter device includes a filter (22A) connected to a common terminal (110) and having a first characteristic, a variable filter (22B) connected to the common terminal (110) and capable of changing a characteristic to one of a second characteristic and a third characteristic, and a switch (23). In the second characteristic, a second pass band including an overlapping band in which the second pass band and an attenuation band of the filter (22A) partially overlap in frequency is defined. Insertion loss within the overlapping band for the third characteristic is greater than insertion loss within the overlapping band for the second characteristic. When the filter (22A) is selected by the switch (23), the characteristic of the variable filter (22B) is set to the third characteristic.
US10715109B2

A radio frequency front-end circuit includes a first filter that is a frequency variable filter connected to a first select terminal of a switching circuit, and a second filter connected to a second select terminal of the switching circuit. The switching circuit includes a first switch that switches over conduction and non-conduction between a common terminal and the second select terminal. The first filter includes a serial arm resonance circuit connected to the first select terminal, a parallel arm resonator, and a frequency varying circuit. The frequency varying circuit includes a capacitor and a third switch connected in parallel to each other, and is connected in series to the parallel arm resonator. The frequency varying circuit shifts a frequency of the first filter depending on conduction and non-conduction of the third switch.
US10715099B2

A bulk acoustic wave resonator includes a substrate protective layer disposed on a top surface of a substrate, a cavity defined by a membrane layer and the substrate, and a resonating part disposed on the membrane layer. The membrane layer includes a first layer and a second layer, the second layer having the same material as the first layer and having a density greater than that of the first layer.
US10715098B2

An acoustic resonator package includes: a substrate; an acoustic resonator disposed on the substrate; a cap disposed on the substrate and the acoustic resonator; and a bonding portion bonding the substrate and the cap to each other, wherein the cap includes a trench formed around the bonding portion and a protective layer covering a surface of the trench in the cap, and wherein a portion of the bonding portion fills at least a portion of the trench.
US10715094B2

Embodiments provide an amplification circuit, an apparatus for amplifying, a low noise amplifier, a radio receiver, a mobile terminal, a base station, and a method for amplifying. An amplification circuit for amplifying a radio signal comprises a first amplification stage configured to amplify an input signal, Vin(t), to obtain an intermediate signal. The amplification circuit further comprises a cascoding circuit configured to amplify the intermediate signal to obtain a first output signal Voutn(t). The amplification circuit further comprises a second amplification stage configured to amplify the intermediate signal to obtain a second output signal, Voutp(t).
US10715079B2

The process for manufacturing a photovoltaic concentrator comprising a photovoltaic substrate (2) equipped with a plurality of photovoltaic cells (5), and an optical structure (1) comprising a first optical-lens stage (4) and a second optical-lens stage (3) that are intended to optically interact with each other, includes (i) providing a mould (6); and (ii) simultaneously forming the first optical-lens stage (4) and the second optical-lens stage (3) using said provided mould (6), and implementing a step of filling said mould (6) with a material (100), especially by injecting or pouring said material (100).
US10715078B2

The Structural Origami ARray (SOAR) concept is an extremely high performance, deployable solar array system that delivers high power output and exceeds state-of-the-art packaging efficiencies. Unlike existing Z-folding panels or rolled architectures, this approach utilizes an origami-inspired two-dimensional packaging scheme of a flexible blanket/substrate that is coupled with a simple and compact deployable supporting structure that stabilizes the array by external tension or internal support. This enables large deployed areas populated with high efficiency photovoltaic (PV) cells or antenna elements, which compactly stows in a square form factor with thin stack height that minimizes impingement on spacecraft bus internal volume.
US10715072B2

The invention is to a controller for a DC electric motor having a first drive circuit and a second drive circuit that operate in a first state and a second state wherein, in the first state, circuits are connected with terminals input and are responsive to the control signals for receiving a load current and selectively energising winding to create torque in motor. In the second state, circuit is disconnected from terminal such that: circuit is able to be responsive to current for generating a first DC charging current to batteries; and circuit is able to connect with a terminal and be responsive to a second DC charging current for selectively directing an energizing current through winding.
US10715069B2

A discharge control device performs discharging of a capacitor, in a state in which a battery is not connected to an inverter that drives a motor, by causing electric charges accumulated in the capacitor connected to the inverter to be consumed by windings of the motor. The discharge control device performs the discharging of the capacitor by sequentially generating command values for voltages applied to a α axis and a β axis while causing a voltage phase in an αβ stationary coordinate system having a rotation axis of a rotor of the motor as an origin and defined by the α axis and the β axis orthogonal to each other to be inverted in a predefined period.
US10715061B2

A motor control device includes: a PWM controller that PWM-controls an inverter driving a three-phase motor and including three arm portions, each including a high-side switching element and a low-side switching element connected in series with each other between a first power supply line and a second power supply line connected to a potential lower than a potential of the first power supply line. In an energizing period and a non-energizing period in a case where the three-phase motor is energized from the first power supply line through the PWM-control of the inverter, during a first predetermined period in the energizing period immediately before transition from the energizing period to the non-energizing period, the PWM controller performs a SWEEP of a signal applied to one of the high-side switching element and the low-side switching element, and performs a synchronous rectification control.
US10715059B2

A motor driving device controls braking of multiple motors each having a braking device by using a single brake power supply. The braking device includes: an electromagnetic brake that releases braking of a rotary shaft of the motor by energizing a brake coil; a conductive disk configured to rotate together with the rotary shaft and connected in series with the brake coil; and a plurality of resistors provided on a surface of the disk so as to be periodically connected in series with the brake coil as the disk rotates. The motor driving device identifies a failed braking device of the braking devices, based on the current value of the current flowing from the brake power supply and the rotational positions of the rotary shafts of the multiple motors.
US10715058B2

A piezoelectric device includes an insulating substrate, a piezoelectric vibration device that is mounted on a device mounting pad, a metal lid member that seals the piezoelectric vibration device in an airtight manner, an external pad that is arranged outside the insulating substrate, an oscillation circuit, a temperature compensation circuit, and a temperature sensor. The lid member and the temperature sensor or the lid member and the IC component are connected to each other so as to be heat-transferable, and a heat transfer member having thermal conductivity higher than that of the material of the insulating substrate is additionally included.
US10715050B2

A switching circuit includes a first half-bridge circuit, a second half-bridge circuit and a voltage divider circuit connected in parallel with each other and a DC input power (VDC). The first half-bridge circuit includes a first pair of series connected switches and the second half-bridge circuit includes a second pair of series connected switches.
US10715046B2

A method and apparatus for secondary side current mode control of a converter are provided. In the method and apparatus, an output voltage of the converter is detected, where the converter has primary and secondary windings that are galvanically isolated in respective primary and secondary sides. A secondary control signal is generated in the secondary side based at least in part on the output voltage and a reference voltage. The secondary control signal is converted to a primary control signal provided in the primary side. The converter is driven in the primary side based at least in part on the primary control signal and a current sense signal indicative of a current flowing through the primary winding.
US10715045B1

Operating power converters. At least some of the example embodiments are methods including: storing energy in a field of a transformer arranged for flyback operation, the storing by making conductive a primary switch coupled to a primary winding of the transformer; ceasing the storing of energy when a primary current through the primary winding reaches a predetermined value; measuring on time of the primary switch, the measuring creates a value indicative of on time; transferring energy from the field of the transformer; measuring discharge time of the energy from the field of the transformer during the transferring, the measuring of the discharge time creates a value indicative of discharge time; calculating a value indicative of input voltage of the power converter using the value indicative of on time and the value indicative of discharge time; and then compensating the predetermined value used in a subsequent storing energy step.
US10715038B1

A circuit includes a first TSCP (tri-stage charge pump), a second TSCP, a third TSCP, a fourth TSCP, a fifth TSCP, and a load. The first TSCP receives a first phase and a third phase of a five-phase clock and outputs a first current to an output node. The second TSCP receives a second phase and a fourth phase of the five-phase clock and outputs a second current to the output node. The third TSCP receives a third phase and a fifth phase of the five-phase clock and outputs a third current to the output node. The fourth TSCP receives a fourth phase and the first phase of the five-phase clock and outputs a fourth current to the output node. The fifth TSCP receives a fifth phase and the second phase of the five-phase clock and outputs a fifth current to the output node. The load terminates the output node.
US10715035B2

Circuits comprising: a first capacitor(C1); a first switch(S1) having a first side coupled to a VIN and a second side coupled to a first side of C1; a second switch(S2) having a first side coupled to the second side of S1; a third switch(S3) having a first side coupled to a second side of S2 and a second side coupled to a second side of C1; a fourth switch(S4) having a first side coupled to a second side of S3 and a second side coupled to a VSUPPLY, wherein: in a first state, S1 and S3 are off, and S2 and S4 are on; in a second state, S1 and S3 are on, and S2 and S4 are off; and at least one of a control of S1, a control of S2, a control of S3, and a control of S4 is coupled to a time-varying-slew-rate signal.
US10715032B2

The invention concerns a circuit for charging a battery by means of a photovoltaic module, including: input and output terminals intended to be respectively coupled to the module and to the battery; a converter including input and output terminals respectively coupled to the input and output terminals of the charging circuit; a control circuit including power supply terminals coupled to the output terminals of the charging circuit; a switch coupling one of the output terminals of the converter to one of the output terminals of the charging circuit; and a detection circuit configured, when the voltage between output terminals of the charging circuit exceeds a threshold, to send an order to turn off the switch and stop the converter for a predetermined period.
US10715031B2

In order to achieve small noise and small vibration, as well as a small size and a low cost in a power converter including a capacitor module, there is provided a power converter including a power module and a capacitor module. The capacitor module includes: a plurality of capacitor elements each having a flat wound surface; an exterior case; a resin filler; and a restraint point. The exterior case has arranged therein an inclusion serving as a beam in a direction orthogonal to a flat wound surface of at least one capacitor element of the plurality of capacitor elements, and the at least one capacitor element, and the restraint point is arranged substantially in front of the flat wound surface via the inclusion.
US10715018B2

An alternator device for converting mechanical energy into electrical energy, including first rotating disk comprising first coils ducts; second rotating disk including second coil ducts; a magnet located intermediate the first and second rotating disks to generate first magnetic field having first magnetic pole at the first coil ducts and second magnetic field having second magnetic pole opposite the first magnetic pole at the second coil ducts; and a coil base intermediate the first and second rotating disks, the coil base to receive coils aligned with the first and second coil ducts; wherein the first and second rotating disks are adapted to rotate along a rotation axis while the magnet and the coil base remain in static position, rotation of the rotating disks enabling a rotational movement of the magnetic fields through the coils for generation of electric current within the coils, and a method of manufacturing such device.
US10714998B2

A method for reducing stress concentration on a rotor sleeve during balance cutting comprising: providing an axial protrusion to an outer diameter of a first end cap and a second end cap of a rotor assembly; and radially cutting at least one of the sleeve or the axial protrusion to balance the rotor assembly.
US10714991B2

An automotive single-phase electrical motor of a claw pole type includes a rotating motor rotor which rotates around a rotating axis, a stator defined by a pair of annular stator bodies, and a stator coil arrangement which magnetizes the stator bodies. The stator bodies includes a first stator body having a radial arm and at least two magnetic claws, and a second stator body having a radial arm and at least two magnetic claws. The at least two magnetic claws of the first stator body mesh with the at least two magnetic claws of the second stator body so that the stator bodies mate with each other. The stator coil arrangement is provided as a satellite of the stator bodies. The radial arm of the first stator body and the radial arm of the second stator body are magnetically connected to each other at the stator coil arrangement.
US10714990B2

According to one embodiment, a rotating electrical machine includes a shaft, an annular winding, a stator, a rotor, and a core supporter. The annular winding extends in a rotation direction of the shaft. The stator core includes a plurality of stator magnetic poles. The plurality of stator magnetic poles are arranged along the winding. The rotor core includes a plurality of rotor magnetic poles. The plurality of rotor magnetic poles are configured to face the plurality of stator magnetic poles. The core supporter is configured to support at least one of the stator core and the rotor core. The core supporter includes a first insulating section. The first insulating section extends in an axial direction of the shaft. The first insulating section has a slit-shape.
US10714986B2

A system for intelligent initiation of an inductive charging process. In accordance with an embodiment, the system comprises a receiver coil or receiver associated with a mobile device, and provided as a separable or after-market accessory for use with the mobile device. When the mobile device is placed in proximity to a base unit having one or more charger coils, the charger coil is used to inductively generate a current in the receiver coil or receiver associated with the mobile device, to charge or power the mobile device. The base unit and mobile device communicate with each other prior to and/or during charging or powering to determine a protocol to be used to charge or power the mobile device.
US10714976B2

A reception antenna includes a reception coil which receives a power signal. A rectification circuit rectifies an alternating current flowing to the reception antenna. A smoothing capacitor smoothes an output of the rectification circuit. A waveform stabilizer is enabled when a power receiver satisfies a predetermined condition and shifts a parallel resonance frequency of the reception antenna.
US10714974B2

A smart energy storage system is described. The system includes a smart energy storage unit coupled to a selected circuit of a local electric grid, and configured for being charged so as to withdraw and store energy from the local electric grid, and discharged for supplying energy to the local electric grid. The smart energy storage unit includes an energy storage cell configured for being charged so as to withdraw and store energy from the local electric grid, and discharged for supplying energy to the local grid, and a storage cell management unit for controlling the energy storage cell.
US10714969B2

Example embodiments are directed to a device comprising an antenna circuit that receives a radio frequency (RF) signal and that converts the RF signal into an electrical signal, a sensing circuit that senses the electrical signal and that outputs an output signal based on the sensed electrical signal, at least one processing circuit that generates at least one control signal based on the output signal, and a switching circuit that couples the antenna circuit to either the sensing circuit to enter a standby mode of the device or to the at least one processing circuit to exit the standby mode and enter an active mode of the device based on the at least one control signal.
US10714968B2

A problem to be solved is to optimize a storage schedule in which changes in power (W) stored in an energy storage apparatus with time are determined, and an output upper limit (W) of a renewable energy power supply. In order to solve the problem, the invention provides a power control apparatus (10) that stores in an energy storage apparatus an amount of power exceeding an output upper limit instruction value (W), which is determined by an electricity company in power (W) generated by a power generation apparatus, the power control apparatus (10) including a decision unit (11) that decides a storage schedule in which changes in the power (W) to be stored in the energy storage apparatus with time within a predetermined period of time are determined, on the basis of prediction data on changes in the power (W) generated by the power generation apparatus with time within the predetermined period of time and values of various types of power classified on the basis of the output upper limit instruction value (W) within the predetermined period of time.
US10714964B2

A method of charging a battery of a computing device includes determining an amount of charge remaining in a battery coupled to the computing device. The method further includes, in response to a determination that the amount of charge remaining in the battery has decreased more than a first predetermined percentage since connection to a power source during a first predetermined amount of time, adjusting a power state of at least one power consuming circuit of the computing device other than the battery.
US10714963B2

Provided are a charging system, charging method, and device, said charging system comprising a battery; a first rectifier, configured to output a first voltage with a first pulsating waveform; a switch unit, configured to modulate the first voltage; a transformer, configured to output a second voltage with a second pulsating waveform; a second rectifier, configured to output a third voltage with a third pulsating waveform, and the third voltage is configured to be applied to the battery charge the battery; a first current sampling circuit, configured to sample current to obtain a current sampling value; and a control unit configured to output the control signal to the switch unit, adjust the amplification factor of the operational amplifier, and adjust a duty ratio of the control signal according to the current sampling value, such that the third voltage meets a charging requirement of the battery.
US10714962B2

A driving device is easily handled at the start and end of charging. A housing cup which includes a bottom surface portion on which at least one driving device including a power-receiving device is placed and a side face portion extending outward from the peripheral edge portion of the bottom surface portion and is formed so that an upper peripheral edge portion of the side face portion is an opening portion, and a magnetic field formation device which is configured to generate a variable magnetic field at a housing region surrounded by the bottom surface portion and the side face portion to allow the power-receiving device to receive power irrespective of the direction and position of the power-receiving device are provided.
US10714958B2

The invention provides a charging apparatus and an operating method thereof. The charging apparatus includes a power conversion circuit, a feedback circuit, an identifier control circuit, and a low voltage trickle control circuit. The feedback circuit generates a feedback signal for the power conversion circuit, and the power conversion circuit correspondingly adjusts a charging power according to the feedback signal. The power conversion circuit provides the charging power to charge a battery device. The identifier control circuit determines whether to control the feedback circuit to change the feedback signal according to identifier information of the battery device. The low voltage trickle control circuit determines whether to control the feedback circuit to change the feedback signal according to a voltage of the charging power. When the low voltage trickle control circuit controls the feedback circuit to change the feedback signal, the feedback circuit ignores control of the identifier control circuit.
US10714954B2

A switchable direct current voltage power supply for powering a device having an uninterruptible power supply with additional standby power capacity where the switching power supply has a power input and a power output for powering a device with a first battery pack attachable to the switching power supply for providing power to the device when the power input fails and a second battery pack attachable to the first power supply providing additional standby power capacity and where the attachable battery pack utilizes lithium chemistry.
US10714948B2

A method and system for charging multi-cell lithium-based batteries. In some aspects, a battery charger includes a housing, at least one terminal to electrically connect to a battery pack supported by the housing, and a controller operable to provide a charging current to the battery pack through the at least one terminal. The battery pack includes a plurality of lithium-based battery cells, with each battery cell of the plurality of battery cells having an individual state of charge. The controller is operable to control the charging current being supplied to the battery pack at least in part based on the individual state of charge of at least one battery cell.
US10714943B2

Embodiments of the present invention provide a power management method, an electronic device and a power adapter, capable of improving the charge safety. The method is executed in an electronic device charged by a power adapter via a charge cable. The method includes: determining a temperature of a charging interface, in which the charging interface includes at least one of an interface of the power adapter for electric connection with the charging cable, an interface of the charging cable for electric connection with the power adapter, an interface of the charging cable for electric connection with the electronic device, and an interface of the electronic device for electric connection with the charging cable; and managing power of the electronic device according to the temperature of the charging interface.
US10714938B2

Methods, systems, and controllers are described herein for controlling an electrical power system. A time-synchronized measurement of a phasor from one or more phasor measurement units is fed back to a feedback controller. Distributed energy resources of the electrical power system are controlled by the feedback controller using feedback control algorithms by sending, to distributed energy resources, a power setpoint derived from the time-synchronized measurement of the phasor.
US10714932B2

An ESD protection device includes an insulating substrate, first and second discharge electrodes in contact with the insulating substrate, the first and second discharge electrodes separated from each other and opposing each other, first and second outer electrodes on an outside surface of the insulating substrate, the first outer electrode being electrically connected to the first discharge electrode and the second outer electrode being electrically connected to the second discharge electrode, and a discharge auxiliary electrode spanning the first discharge electrode and the second discharge electrode in a region where the discharge electrodes oppose each other. The discharge auxiliary electrode includes semiconductor particles and metal particles. An average particle diameter of the metal particles is about 0.3 μm to about 1.5 μm. A density of the metal particles is greater than or equal to about 20 particles/50 μm2 and the semiconductor particles include an oxygen-containing layer on surfaces of the semiconductor particles.
US10714927B2

A power source apparatus and associated method for protecting an electrical device such as a mobile device from an electric shortage are disclosed. The power source apparatus can be provided within the electrical device to provide power to device components. The power source apparatus can include a power source such as a battery, one or more triggering components, and a disconnection component. The triggering component(s) can be connected to a moisture/fluid detection circuit of the electrical device. Upon receiving an input signal indicative of detected moisture/fluid within the electrical device, the triggering component(s) send a disconnection signal to the disconnection component which may be a solenoid. The disconnection component disconnects the power source from device circuitry of the electrical device. The power source apparatus can also include a reconnection component that can be manually actuated by a user or automatically actuated to reconnect the power source to the device circuitry.
US10714921B1

A busway tap off system is provided for connecting an electrical supply to a distribution device. The busway tap off system comprises a joint mounted tap box configured for making an electrical connection between an electrical busway and a power distribution system including a downstream panel. The joint mounted tap box is a dynamically mounted electrical equipment and the downstream panel is a rigidly mounted electrical equipment. The busway tap off system further comprises electrical cables that connect the two equipments. The busway tap off system further comprises a nipple accessory that provides a flexible mechanical and electrical connection between the dynamically mounted electrical equipment and the rigidly mounted electrical equipment. The nipple accessory is configured as a rigidly-constructed flexible fitting that includes two axial slides that enable the nipple accessory to move with the dynamically mounted electrical equipment yet remains fixed to the rigidly mounted electrical equipment.
US10714912B2

A switch cabinet which has a plurality of vertical frame profiles, whereby outer vertical planes (V) are defined, wherein at least one side panel of the switch cabinet is arranged in at least one of the vertical planes (V), characterized in that the side panel consists at least partially of a fabric with metallic or metallically coated threads or fibers. Furthermore, a related method and a related bay of cabinets are described.
US10714910B2

The invention relates to a system, including a bus bar device and a power converter housing, wherein the bus bar device includes a stack made of at least two bus bars and an electrically insulating insulation body, which encloses the bus bars in two insulating regions of the bus bar device, wherein each bus bar includes two opposing base surfaces extending in the direction of current flow and lateral surfaces connecting the base surfaces and extending in the direction of current flow, wherein the bus bar device includes a temperature control region formed between the insulating regions, in which the insulation body has an opening that exposes one of the lateral surfaces and a portion of at least one of the base surfaces of a respective bus bar, wherein the bus bars are thermally connected to the power converter housing in the temperature control region by a heat transfer means.
US10714909B2

An expandable bused elbow is provided for connecting modular metering equipment around an inside corner. The expandable bused elbow comprises an enclosure configured to fit in a gap between modular equipment. The enclosure has a box assembly with a sliding mechanism that enables expansion of the box assembly. The expandable bused elbow further comprises a first bussed interior assembly enclosed within the enclosure having a first bottom end and a second bussed interior assembly enclosed within the enclosure having a second bottom end. The first bussed interior assembly has a first bussing expansion mechanism that enables expansion of the first bussed interior assembly. The second bussed interior assembly has a second bussing expansion mechanism that enables expansion of the second bussed interior assembly. The expandable bused elbow further comprises a center corner assembly disposed in a middle space between the first bussed interior assembly and the second bussed interior assembly.
US10714901B2

In an embodiment a laser include a semiconductor layer sequence having an active zone for generating radiation and an electrical contact web arranged on a top side of the semiconductor layer sequence, wherein the contact web is located on the top side only in an electrical contact region or is in electrical contact with the top side only in the contact region so that the active zone is supplied with current only in places during operation, wherein the contact web comprises a plurality of metal layers at least partially stacked one above the other, wherein at least one of the metal layers comprises a structuring so that the at least one metal layer only partially covers the contact region and has at least one opening or interruption, and wherein the structuring reduces stresses of the semiconductor layer sequence on account of different thermal expansion coefficients of the metal layers.
US10714895B2

An optical source may include an optical gain chip that provides an optical signal and that is optically coupled to an SOI chip. The optical gain chip may include a reflective layer. Moreover, the SOI chip may include: a common optical waveguide, a splitter that splits the optical signal into optical signals, a first pair of resonators that are selectively optically coupled to the common optical waveguide and that are configured to perform modulation and filtering of the optical signals, and a first bus optical waveguide that is selectively optically coupled to the first pair of resonators. Furthermore, resonance wavelengths of the resonators may be offset from each other with a (e.g., fixed) separation approximately equal or corresponding to a modulation amplitude, and a reflectivity of the first pair of resonators may be approximately independent of the modulation.
US10714885B2

A solder paste is printed on a first surface of a sheet. Connectors are mounted on a first surface of a first board and a second surface of a second board. The sheet is inverted. A solder paste is printed on a second surface of the sheet. Connectors are mounted on a second surface of the first board and a first surface of the second board. The solder paste printed onto the second surface of the sheet is melted. The first board is separated from the second board. The first and second board have the same connector layout. A first connector soldered to the first surface of the first board and a second connector soldered to the second surface of the second board are disposed at a location where the sheet can be bent and broken along the separation line.
US10714883B2

An electrical line arrangement for a vehicle including a dimensionally stable flat conductor rail and a contact part housing fitted on the flat conductor rail such that it at least partially engages around the flat conductor rail. A contact part which makes contact with the flat conductor rail can be accommodated or is accommodated in the contact part housing. The line arrangement includes a mounting rail having a mounting flange for connection to the vehicle and a first connecting flange through which the contact part housing is held on the mounting rail in an interlocking manner in such a way that enables movement in a translatory manner along the mounting rail.
US10714880B1

A powered wall plate with at least two wall plate electrical current features behind the rear surface of the wall plate, each with a receiving prong, and a plug-in module with at least two electrical plugs and two arms, each arm with an electrical current transfer contact configured to removably mate with the receiving prong. A plurality of LED lights is located along a bottom edge of the front surface, a photocell is exposed on the front surface of the wall plate, and a control switch has an on position, an off position, and an auto position. A transformer housing may extend forward of the front surface and includes a circuit therein operatively coupled to a USB port on a perpendicular surface of the transformer housing. The USB port is configured to provide power when power is supplied to the at least two electrical plugs.
US10714879B2

A faceplate assembly may include a faceplate having an opening configured to receive an electrical device insert, and an adapter that is disposed between the faceplate and a structure. The adapter may abut a surface of the structure. The faceplate assembly may include one or more biasing members that may be configured to bias the faceplate outward relative to the structure. A first biasing member may include one or more resilient fingers. The fingers may be configured to abut a yoke that is installed in the structure (e.g., attached within an opening of the structure). A second biasing member may include a resilient spacer that is configured to be disposed between the faceplate and the adapter. The one or more biasing members may apply forces against the faceplate that may cause the faceplate to be biased outward relative to the surface of the structure.
US10714872B2

A connector structure enables replacement of an STP cable (10B) and a UTP cable (10A) without a large structural change. UTP connection terminals (21A) connected to respective wires (11) of the UTP cable (10A) are accommodated in accommodating portions (26) of a UTP dielectric (22A) such that insertion areas (53) for male terminals (91) are close to each other in a width direction. STP connection terminals (21B) connected to respective wires (11) of the STP cable (10B) are accommodated in accommodating portions (26) of an STP dielectric (22B) such that insertion areas (53) for male terminals (91) are farther apart in the width direction than in the case of the UTP connection terminals (21A). The UTP connection terminals and the STP connection terminals that are accommodated in the accommodating portions (26) have protrusions (34) that are oriented in the same direction when.
US10714858B2

A connector includes a casing configured to include a first contactor, a slider capable of insertion into the casing and configured to include a second contactor, an elastic body provided in the casing, the elastic body causing the slider to protrude from the casing, and a movable spherical body rotatably provided at a tip of the slider, wherein, when the slider is inserted into the casing, the first contactor comes in contact with the second contactor and the slider is moved in an intersecting direction that intersects an insertion direction of the slider.
US10714853B2

According to one embodiment, a semiconductor storage device includes a housing, a plurality of terminals, signal terminals, a controller, signal wiring, and a memory. The housing has a first face and a second face opposite to the first face. The plurality of terminals is exposed to the first face, extends in a first direction, and is spaced apart in a second direction intersecting with the first direction. A signal terminal included in the plurality of terminals has a first end in the first direction, and a second end opposite to the first end in the first direction, the second end being closer to a contact position with a socket contact than the first end. The controller is located in the housing. The signal wiring extends from the first end in the housing and electrically connects the first end and the controller. The memory is electrically connected to the controller in the housing.
US10714845B2

An electrical connector includes two pads having the same shape. Each pad has a connector body with a first groove, a second groove, and a hole. The hole extends through the connector body between the first groove and the second groove. A fastener extends through the hole of both of the two pads so that the two pads having the same shape are connected to one another and are pivotable around the fastener relative to one another with the two first grooves contacting a first conductor when the first conductor is in an installed position and the two second grooves contacting a second conductor when the second conductor is in an installed position. A spring is between a first end of the fastener and one of the two pads having the same shape so that the spring biases the two pads having the same shape towards each other.
US10714837B1

An array antenna with dual polarization elements is provided. Each dual polarization element comprises a first sub-element and a second sub-element, each of which comprises a radiator that is embodied in and/or on a planar member and a balanced feed for the radiator that divides the radiator into two sections that that are mirror images of one another relative to a plane that passes through the balanced feed structure and is perpendicular to the planar member. Further, the radiator of the first sub-element is positioned to lie in an isolation plane associated with the second sub-element. Two such elements are positioned with respect to one another so that the planar members associated with the first elements are coplanar.
US10714835B2

An antenna element includes an antenna radiator, an antenna dielectric substrate, a grounded metal plate, and a feed structure. The antenna radiator consists of several metal sheet units. The coupled slots between the adjacent metal sheet units form radiation slots and the grounded metal plate has a feed slot which is fed by the feed structure and the radiation slot is fed by the feed slot through coupling. This disclosure also provides an antenna packaging structure. An EBG is deployed as part of the radiator to improve the problems of high profile and narrow bandwidth of the traditional antennas. The EBG radiator also achieves low profile, broadband and high gain characteristics that is very suitable for millimeter wave band AiP and is also suitable for mass production at low cost, and therefore it can be widely used in 60 GHz WiFi system and a 5G millimeter wave communication system.
US10714834B2

Broadband antennas are described that include a quad-ridge horn inside which two different lenses are inserted creating a broadband horn-lens combination. One of these lenses is a cross-polyrod lens, formed from a pair of polyrods disposed in a crossed arrangement, each polyrod shaped in a predetermined manner. The other one of these lenses is a prolate spheroidal lens. The broadband antennas can produce, at the output thereof, Gaussian-like beams in both principal polarizations from VHF to 20 GHz. As such, the broadband antennas can be used to perform material measurements in a compact admittance tunnel. Simulation results show that directivity of quad-ridge horns can be improved using the combination of lenses of the broadband antennas. Therefore, the broadband antennas can also be of interest for far-field radiation applications.
US10714830B2

A digital phase shifter is described where each bit of the phase shifter has a circuit block including one PIN diode in parallel with one transmission line. The phase shifter requires only one PIN diode and one transmission line per bit circuit block. Each PIN diode behaves like a simple switch for phase shifting. When the PIN diode is forward biased (“on” state), current flows through the PIN diode and the RF signal is not phase shifted. When the pin diode is not forward biased (“off” state), current flows through the transmission line parallel to the PIN diode and the RF signal is phase shifted by the transmission line. The digital phase shifter may have n circuit blocks in series, and adjacent PIN diodes may share a current when both are on. The phase shifter may be implemented in a phased array or reflect array antenna including multiple phase shifters.
US10714829B2

Phased array antenna systems are disclosed. An antenna system as disclosed herein can include a plurality of antenna or radiating elements formed on a common plane comprising a first surface of a circuit board. Each antenna element has one or more feeds. Integrated circuits are placed on a second surface of the circuit board. Each integrated circuit is associated with one or more of the antenna elements. Signal lines connecting an integrated circuit to a feed of an antenna element can be shielded using interlayer ground planes and interlayer conductive plugs. In addition, back surfaces of the integrated circuits can be connected to a common heatsink using a thermally conductive medium.
US10714823B2

Antenna structure with a curvilinear radiating element and a circularly symmetric high impedance surface ground plane. The curvilinear radiating element has a first diameter in a plane of the curvilinear radiating element and the circularly symmetric high impedance surface ground plane has a second diameter in a plane of the circularly symmetric high impedance surface ground plane. The curvilinear radiating element is positioned proximate the circularly symmetric high impedance surface ground plane with the plane of the curvilinear radiating element parallel to the plane of the circularly symmetric high impedance surface ground plane. A surface of the curvilinear radiating element is separated from a surface of the circularly symmetric high impedance surface ground plane by a distance.
US10714821B2

An antenna structure includes a central grounding line and a spiral antenna. The central grounding line is linear and has two end portions provided with a grounding point and a first open point, respectively. The spiral antenna has two end portions provided with a feeding point and a second open point, respectively. The spiral antenna winds around the central grounding line while extending in the direction from the grounding point to the first open point, with the second open point positioned proximate to the first open point, wherein the spiral antenna and the central grounding line are spaced apart by an axial distance, thereby allowing the antenna structure to receive and transmit a radio frequency signal with circular polarization.
US10714819B2

An antenna array for use in a passenger vehicle. Four of the roof support pillars are used as antenna elements. Each of the four pillars is electrically connected or coupled to one end of a corresponding meanderline component. The other end of each meanderline is in turn coupled to a radio receiver, typically through a combining network.
US10714817B2

Antenna device for a radar detector, which has a circuit board having an electrically insulating substrate, on which a respective electrically conductive layer is arranged on each of two opposing sides, wherein the layer of at least one first side is configured as at least one main antenna. According to the invention, in addition to the at least one main antenna in each case, at least one antenna structure is provided which is integrated with the substrate, wherein each antenna structure integrated with the substrate comprises: a plurality of cutouts which are formed in the substrate and arranged in a waveguide and in each of which an electrically conductive material is arranged at least partially, and a feeder cable formed by the electrically conductive layer of one of the sides for feeding an electromagnetic wave into the antenna structure integrated with the substrate.
US10714814B2

The present disclosure relates to an antenna, in particular a mobile communication antenna, especially for a mobile communication base station, the antenna comprising an antenna control unit, a plurality of radiators and a plurality of functional elements, wherein the antenna control unit has a configuration function which can be accessed via an external control unit, wherein at least one functional element is deactivable and/or activable via the configuration function.
US10714802B2

A transmission line device includes: a plurality of electrically conductive members stacked with interspaces therebetween, the plurality of electrically conductive members including three or more electrically conductive members; and a plurality of artificial magnetic conductors each located between two adjacent electrically conductive members among the plurality of electrically conductive members. Among the plurality of electrically conductive members, at least one electrically conductive member located between two endmost electrically conductive members is shaped as a plate having at least one slit. At least a portion of the plurality of artificial magnetic conductors is located around the at least one slit to suppress leakage of an electromagnetic wave propagating along the at least one slit.
US10714801B2

The present invention discloses a band-pass filtering structure and an antenna housing. The band-pass filtering structure includes a functional layer structure, where the functional layer structure includes two or more first dielectric layers and a second dielectric layer that is disposed between two first dielectric layers, a plurality of first conductive geometric structures displayed in a periodical arrangement are disposed on the first dielectric layer, a plurality of second conductive geometric structures displayed in a periodical arrangement are disposed on the second dielectric layer, the first conductive geometric structure includes two crossly-disposed conductive strips, and the second conductive geometric structure is a closed conductive geometric structure. The present invention resolves a technical problem that filtering performance of an existing band-pass filter is poor due to unreasonable structural design.
US10714795B2

Techniques for monitoring an internal pressure of a battery cell, whereby a membrane that is part of an outer shell of the battery cell is used as an element of capacitive-based or inductive-based sensor circuitry in order to measure a change of capacitance or inductance under deformation of the membrane from the internal pressure of the battery cell. The change of capacitance or inductance may in turn be used to derive a value for the internal pressure of the battery cell.
US10714794B2

A lithium ion secondary battery includes a housing. An electrode group and an electrolytic solution are in the housing. The electrode group is immersed in the electrolytic solution. The electrode group includes a positive electrode including a positive electrode active material layer and a negative electrode including a negative electrode current collector and a negative electrode active material layer. The negative electrode active material layer is disposed on a surface of the negative electrode current collector. A metal piece is electrically connected to the negative electrode current collector. The metal piece is disposed at a position at which at least a part of the metal piece is immersed in the electrolytic solution. An oxidation-reduction potential of the metal piece is within an overdischarging voltage range and is lower than an oxidation-reduction potential of the negative electrode current collector.
US10714793B2

The present disclosure provides a rechargeable battery assembly and a terminal device. The terminal device is equipped with a rechargeable battery assembly. The rechargeable battery assembly comprises a battery main body (110), at least one temperature measurement element (120), and a processor. The battery main body comprises a cell (112) and at least two battery tabs (114). A charging current from a charging device is transmitted to the cell through the battery tabs. One temperature measurement element is corresponding to one battery tab, and the temperature measurement element is used for detecting the temperature of the corresponding battery tab, and transmitting, to the processor (140), temperature information indicating the temperature of the corresponding battery tab. The processor is used for acquiring the temperature information from the temperature measurement element, and for determining the temperature of the cell according to the temperature information.
US10714791B2

The present invention relates to a gel polymer electrolyte, which includes a matrix polymer and an electrolyte solution impregnated in the matrix polymer, wherein the matrix polymer is formed in a three-dimensional network structure by polymerizing a first oligomer which includes unit A represented by Formula 1 and unit B having a crosslinkable functional group derived from a compound including at least one copolymerizable acrylate group, and a lithium secondary battery including the same.
US10714788B2

Solid-state lithium ion electrolytes of lithium silicate based composites are provided which contain an anionic framework capable of conducting lithium ions. An activation energy for lithium ion migration in the solid state lithium ion electrolytes is 0.5 eV or less and room temperature conductivities are greater than 10−5 S/cm. Composites of specific formulae are provided and methods to alter the composite materials with inclusion of aliovalent ions shown. Lithium batteries containing the composite lithium ion electrolytes are also provided.
US10714784B2

A secondary battery suitable for a portable information terminal or a wearable device is provided. An electronic device having a novel structure which can have various forms and a secondary battery that fits the forms of the electronic device are provided. In the secondary battery, sealing is performed using a film provided with depressions or projections that ease stress on the film due to application of external force. A pattern of depressions or projections is formed on the film by pressing, e.g., embossing.
US10714783B2

A system includes a first plurality of fuel cell stacks configured to generate a first portion of an electric potential and a second plurality of fuel cell stacks configured to generate a second portion of the electric potential. The system includes a positive electrical bus bar conductively coupled with the first plurality of fuel cell stacks and configured to power an electrical load using the generated electric potential. The system includes a negative electrical bus bar conductively coupled with the second plurality of fuel cell stacks and configured to electrical load using the generated electric potential. The positive electrical bus bar is elongated and extends between the first plurality of fuel cell stacks and the negative electrical bus bar is elongated and extends between the second plurality of fuel cell stacks.
US10714782B2

A cell stack device in the present disclosure includes a cell stack including a plurality of arranged cells, and a first manifold configured to fix a first end of each of the cells with a sealing material and supply reactive gas to the cells. The first manifold includes a frame body configured to fix the first end of each of the cells with the sealing material inside the frame body, and a plate body bonded to a first end portion of the frame body and having a rigidity lower than that of the frame body. A module in the present disclosure includes a housing and the cell stack device housed in the housing. Furthermore, a module housing device in the present disclosure includes an external casing, the module in the external casing, and an auxiliary device configured to operate the module in the external casing.
US10714779B2

The present invention relates to an electrolyte composition and method of making thereof. The proton conducting electrolyte composition i.e. Sr1-xBaxCe0.5Zr0.35Y0.1Sm0.05O3-δ, comprises combination of doped BaCeO3 and BaZrO3 by their doping in Sr, Y, and Sm, wherein x=0 to 0.99, and δ=0 to 0.1. The proton conducting electrolyte is used as at least one component, among others, of Solid Oxide Fuel Cells such Solid Oxide Fuel Cell (SOFC) can easily be operated at intermediate temperature about 600° C. thereby making the SOFC cost effective and reliable and showing highest power density.
US10714773B2

A system for heating or cooling a fuel cell circuit includes a fuel cell stack designed to receive a fluid. The system also includes a temperature sensor to detect a fluid temperature of the fluid, an actuator to increase or decrease the fluid temperature, and an electronic control unit (ECU). The ECU is designed to receive a target fuel cell temperature corresponding to the fuel cell stack and based on a power request, to determine a temperature rate of change corresponding to a desired rate of temperature change of a current fuel cell temperature of the fuel cell stack to achieve the target fuel cell temperature based on the target fuel cell temperature, and to control the actuator to increase or decrease the fluid temperature based on the temperature rate of change to cause the current fuel cell temperature to increase or decrease to the target fuel cell temperature.
US10714759B2

Disclosed is an electrode for lithium-air batteries without using a binder and a carbon additive and a method of manufacturing the same, and more specifically, provided is a nanofiber network-based current collector-catalyst monolithic porous air electrode which has an improved specific surface area and high air permeability as the energy density per weight is increased and the diameter, porosity, and thickness of the nanofibers are controlled by utilizing a significantly light polymer and carbon based material.
US10714756B2

In certain aspects, electrolytic deposition and electroless displacement deposition methods are provided to form bimetallic structures that may be used as a bipolar current collector in a battery or a substrate for forming graphene sheets. In other aspects, bipolar current collectors for lithium-ion based electrochemical cells are provided. The bimetallic current collector may have an aluminum-containing surface and a continuous copper coating. In other aspects, a flexible substrate may be coated with one or more conductive materials, like nickel, copper, graphene, aluminum, alloys, and combinations thereof. The flexible substrate is folded to form a bipolar current collector. New stack assemblies for lithium-ion based batteries incorporating such bipolar current collectors are also provided that can have cells with a tab-free and/or weld-free design.
US10714755B2

The present disclosure relates to a method for making a cathode active material coating liquid including steps: forming a phosphate ester solution by adding a phosphate ester in an alcoholic solvent; and introducing an aluminum salt to the phosphate ester solution, the aluminum salt being soluble to the alcoholic solvent, and the aluminum salt reacting with the phosphate ester to form a homogeneous clear solution. The present disclosure also relates to a cathode active material coating liquid and a method for coating the cathode active material.
US10714751B2

A negative electrode for a lithium ion secondary battery including a current collector and a negative electrode active material layer on the current collector, wherein the negative electrode active material layer includes: a first composite particle with a first graphite core particle and a first non-graphite-based carbon material coating a surface thereof; and a second composite particle with a second graphite core particle and a second non-graphite-based carbon material coating a surface thereof, and wherein an average particle diameter of the first composite particles is 5-30 μm; an average particle diameter of the second composite particles is 2-25 μm, and is smaller than the average particle diameter of the first composite particles; the mixing ratio of the first composite particle A and the second composite particle B is 50:50-95:5 in mass ratio; and a density of the negative electrode active material layer is 1.4-1.7 g/cm3.
US10714747B2

A high energy density lithium-ion rechargeable battery cell is provided which includes an anode material containing a carbon-nanotube (CNT)-Si composite and a cathode material containing a core-shell gradient and/or concentration gradient nickel-based lithium metal oxide.
US10714746B2

A conductive composition for electrode is provided that is excellent in conductivity and dispersibility. Further, an electrode for lithium ion secondary battery with lower plate resistance and a lithium ion secondary battery excellent in rate characteristics are provided that use this conductive composition. A conductive composition for electrode, including: carbon nanofiber with a median diameter D50 value by volume from 0.1 to 8 pm; an active material; and a binder enables production of an electrode for lithium ion secondary battery with lower plate resistance and a lithium ion secondary battery excellent in rate characteristics.
US10714744B2

The present application is generally directed to composites comprising a hard carbon material and an electrochemical modifier. The composite materials find utility in any number of electrical devices, for example, in lithium ion batteries. Methods for making the disclosed composite materials are also disclosed.
US10714741B2

The present invention relates to a silicon-carbon-based composite negative electrode active material, and a negative electrode for a secondary battery and a lithium secondary battery including the same, and particularly to a silicon-carbon-based composite negative electrode active material, in which physical stability is improved by including a carbon-based core capable of intercalating and deintercalating lithium ions and at least one silicon particle included in the carbon-based core and disposed in the form of being distributed in an outer portion of the carbon-based core, and a negative electrode for a secondary battery and a lithium secondary battery in which life characteristics are improved by including the same.
US10714740B2

The present invention relates to a cathode active material for lithium secondary battery and a lithium secondary battery including the same, and more specifically it relates to a cathode active material for lithium secondary battery in which the lithium ion diffusion path in the primary particles is formed to exhibit directivity in the center direction of the particles, and a lithium secondary battery including the same. The cathode active material for lithium secondary battery of the present invention has a lithium ion diffusion path exhibiting specific directivity in the primary particles and the secondary particles, and thus not only the conduction velocity of the lithium ion is fast and the lithium ion conductivity is high but also cycle characteristics are improved as the crystal structure hardly collapses despite repeated charging and discharging.
US10714737B2

A main object of the present disclosure is to provide an all solid lithium battery with excellent capacity durability. The above object is achieved by providing an anode layer to be used in an all solid lithium battery, the anode layer comprising: a metal particle capable of being alloyed with Li, as an active material; and the metal particle has two kinds or more of crystal orientation in one particle.
US10714732B2

A current collecting lead is interposed between a sealing body and a positive electrode current collector for connecting the sealing body and the positive electrode current collector, the sealing body including a positive electrode terminal, the positive electrode current collector being attached to an electrode group, the current collecting lead including: a top wall portion positioned on the side of the sealing body; leg portions positioned on the side of the positive electrode current collector and that face the top wall portion; and a pair of side wall portions that extend between side edges of the top wall portion and side edges of the leg portions and that face each other, a first corner portion and a second corner portion formed by the top wall portion and the side wall portions and a third corner portion and a fourth corner portion formed by the leg portions and the side wall portions being rounded corners that are curved.
US10714728B2

A lithium-sulfur battery includes a cathode, an anode, a lithium-sulfur battery separator and an electrolyte. The lithium-sulfur battery separator includes a PSL and a FL. The FL is located on a surface of the PSL. The FL comprises a plurality of graphene sheets and a plurality of MoP2 nanoparticles uniformly mixed with each other.
US10714725B2

Provided is a separator that is used in a nonaqueous electrolyte secondary battery, and that exhibits high impregnation ability with respect to a nonaqueous electrolyte solution. The separator for a nonaqueous electrolyte secondary battery disclosed herein is provided with: a porous substrate; a first coat layer formed on a pair of main surfaces and on an inner surface of the porous substrate; and a second coat layer formed on the first coat layer, at least on one main surface of the porous substrate. The first coat layer has higher hydrophilicity than the porous substrate. The second coat layer has higher hydrophobicity than the porous substrate. The hydrophilicity of an inner surface of the separator for a nonaqueous electrolyte secondary battery is higher than the hydrophilicity of the second coat layer, in a central region of the separator for a nonaqueous electrolyte secondary battery in the thickness direction thereof.
US10714720B2

A system includes a vent housing configured to be installed on a lower housing of a battery module at a first side of the vent housing. The vent housing has a main body having an opening on a second side of the vent housing and an internal chamber coupled to the opening. The internal chamber includes a first wall having an internal burst vent configured to open at a first pressure threshold and a second wall having a ventilation vent comprising a gas-selective permeability layer.
US10714719B2

A housing of vehicle lithium battery-modules, each battery-module having an evacuation opening and a parallelepipedal shape, where a plurality of horizontal plates are arranged inside the housing, parallel to each other, alternated with layers of the battery-modules, wherein each one of the horizontal plates is joined to perimetral surfaces of the housing to convey heat towards the external environment, wherein each battery-module is arranged so that the evacuation openings are vertically aligned, and wherein each one of the horizontal plates comprises corresponding openings equipped with appropriate gaskets on both the opposite faces of the horizontal plates, in order to define continuous and gastight evacuation channels between the battery-modules.
US10714710B2

Provided is an organic light-emitting display apparatus including a substrate including a black pigment; a pixel electrode above the substrate; a pixel defining layer above the pixel electrode and having an opening for exposing at least a portion of the pixel electrode; an intermediate layer above the pixel electrode and including an emission layer (EML); and an opposite electrode above the intermediate layer.
US10714709B2

Provided are an organic light-emitting diode (OLED) and an organic light-emitting device including the same. The OLED includes a first electrode, an organic emissive layer which includes a plurality of convex curves or a plurality of concave curves in a light-emitting region and of which a slope of an inclined plane of an upper region with respect to a horizontal line dividing a height of the plurality of convex curves into halves is greater than a slope of an inclined plane of a lower region thereof, and a second electrode provided on the organic emissive layer. Accordingly, the OLED and the organic light-emitting device including the same are capable of improving current efficiency.
US10714707B2

An organic light-emitting display apparatus includes a display substrate and a thin film encapsulation layer on the display substrate. The display substrate includes at least one hole, a thin film transistor, a light-emitting portion electrically connected to the thin film transistor, and a plurality of insulating layers. The light-emitting portion includes a first electrode, an intermediate layer, and a second electrode. The display substrate includes an active area, an inactive area between the active area and the hole, and a plurality of insulating dams. Each insulating dam includes at least one layer. The inactive area includes a first area different from a laser-etched area and a second laser-etched area.
US10714697B1

A method for making a nanostructure includes preparing a perovskite precursor in a solvent where the perovskite concentration ranges from about 0.5M to about 1.5M. A substrate is coated in the perovskite precursor, and the perovskite precursor is annealed onto the substrate, thereby forming the nanostructure including the substrate with perovskite nanocrystal deposits.
US10714688B2

A perovskite thin film and method of forming a perovskite thin film are provided. The perovskite thin film includes a substrate, a hole blocking/electron transport layer, and a sintered perovskite layer. The method of forming the perovskite solar cell includes depositing a perovskite layer onto a substrate and processing (for example, by sintering) the perovskite layer with intense pulsed light to initiate a radiative thermal response that is enabled by an alkyl halide additive.
US10714684B2

A PCM cell is provided that includes a phase change memory material that is sandwiched between top and bottom electrodes which are both composed of a doped silicon germanium alloy. A doped silicon germanium alloy has good electrical conductivity, while having a lower thermal conductivity than conventional conductive materials such as TiN or W that are typically used in PCM cells. The presence of the doped silicon germanium alloy mitigates heat loss in the PCM cell thus reducing reset current and, in some embodiments, thermal cross-talk between adjacent PCM cells. Further reduction of heat loss can be obtained by providing an airgap-containing dielectric spacer laterally adjacent to the PCM cell.
US10714675B2

Provided are a piezoelectric device and a method of fabricating the same and the piezoelectric device may include a substrate including a 3-dimensional pattern surface layer; and a piezoelectric material layer, which is formed on the pattern surface layer and forms a 3-dimensional interface with the pattern surface layer.
US10714670B2

The present disclosure provides a thermoelectric conversion module that enables continued use of a thermoelectric generation system even when a part of a plurality of the thermoelectric conversion modules fails by being exposed to a higher temperature. The thermoelectric conversion module according to the present disclosure includes a substrate, a plurality of thermoelectric conversion element pairs electrically connected in series on the substrate, a pair of external terminals that carries out one of inputting and outputting of electric power, and a low melting point conductor. The low melting point conductor has a melting point that is substantially equal to a heat-resistant temperature of a p-type thermoelectric conversion element or an n-type thermoelectric conversion element. One of the pair of external terminals has a first connecting part connecting with the p-type thermoelectric conversion element positioned at one end of the plurality of thermoelectric conversion element pairs, whereas the other of the pair of external terminals has a second connecting part connecting with the n-type thermoelectric conversion element positioned at the other end of the plurality of thermoelectric conversion element pairs. The first and second connecting parts and the low melting point conductor are positioned in an inner region of the substrate. At least a part of the low melting point conductor is positioned between the pair of external terminals and is electrically insulated from at least one of the pair of external terminals.
US10714669B2

Provided herein are a thermoelectric material and a method for preparing the same. The thermoelectric material may include a plurality of grains formed by a chemical bond between a first element and a second element, a graphene-based material; and metal particles. In particular, the graphene-based material and the metal particles may be in interfaces between the grains.
US10714668B2

A light-emitting device includes a substrate, a circuit array including a plurality of circuit units disposed on the substrate, a first conductive pattern, a second conductive pattern, a first wire pattern, and a second wire pattern disposed on the circuit array, and a light-emitting element disposed on one of the circuit units. The light-emitting element includes a first electrode and a second electrode respectively electrically connected to the first conductive pattern and the second conductive pattern. The second electrode is not overlapped with the first wire pattern and the second wire pattern. A manufacturing method of the light-emitting device is also provided.
US10714661B2

A light-emitting apparatus includes: a solid-state light source; and a wavelength convertor. The solid-state light source emits first light including green light with a peak wavelength in a range of 480 to 550 nm, inclusive. The wavelength convertor contains a red phosphor including Ce as a luminescent center. The red phosphor is excited by at least part of the green light to emit second light. The second light has a spectrum with a peak wavelength in a range of 600 to 700 nm, inclusive. The red phosphor contains a nitride or an oxynitride as a host material.
US10714659B2

Disclosed according to one embodiment is a light-emitting element comprising: a light-emitting structure comprising a first semiconductor layer, an active layer, and a second semiconductor layer; a second conductive layer electrically connected to the second semiconductor layer; a first conductive layer which is disposed in a plurality of via holes passing through the light-emitting structure and second conductive layer and comprises a plurality of through electrodes electrically connected to the first semiconductor layer; an insulation layer for electrically insulating the plurality of through electrodes from the active layer, second semiconductor layer, and second conductive layer; and an electrode pad disposed in an exposed area of the second conductive layer, wherein the farther away the second conductive layer disposed between the plurality of through electrodes is from the electrode pad, the greater the width of the second conductive layer becomes.
US10714648B2

Disclosed are a solar cell and a method of manufacturing the same. The solar cell with a graphene-silicon quantum dot hybrid structure according to an embodiment of the present disclosure includes a hybrid structure including a silicon quantum dot layer, in which a silicon oxide layer includes a plurality of silicon quantum dots; a doped graphene layer formed on the silicon quantum dot layer, and an encapsulation layer formed on the doped graphene layer; and electrodes formed on upper and lower parts of the hybrid structure.
US10714639B2

An on-chip mode converter-based silicon-germanium photoelectric detection apparatus comprises an insulating substrate, an optical coupler, an on-chip mode converter and a multi-mode silicon-germanium photoelectric detector. The optical coupler, the converter and the photoelectric detector are sequentially connected and all fixed on silicon wafers of the insulating substrate. An incident fundamental mode optical signal is transmitted to the optical coupler through a single-mode fiber, enters the converter via the optical coupled. The converter converts the fundamental mode optical signal into a multi-mode optical field and enters the photoelectric detector, which converts the multi-mode optical field into an electrical signal. Heavily germanium-doped region are located in areas with relatively weak distributed light intensity of the multi-mode optical field. The absorption loss of the heavily germanium-doped region and third through-holes on the optical field is dramatically reduced and the responsiveness of the apparatus can be improved effectively.
US10714638B2

Optoelectronic modules, such as imaging cameras, proximity sensors, range cameras, structured-light/pattern generators, and image projectors, and methods for their manufacture, are disclosed. The optoelectronic modules exhibit particularly small dimensions. The optoelectronic modules include an optical assembly, an intermediate substrate, and a base substrate. The optical assembly includes a flange portion. An adhesive layer between the flange portion and the intermediate substrate, and an additional adhesive layer between the intermediate substrate and the base can be substantially non-transmissive to light and can resist dimensional changes dues to moisture absorption, for example.
US10714637B2

The inventive technology, in certain embodiments, may be generally described as a solar power generation system with a converter, which may potentially include two or more sub-converters, established intermediately of one or more strings of solar panels. Particular embodiments may involve sweet spot operation in order to achieve improvements in efficiency, and bucking of open circuit voltages by the converter in order that more panels may be placed on an individual string or substring, reducing the number of strings required for a given design, and achieving overall system and array manufacture savings.
US10714636B2

A multijunction solar cell assembly and its method of manufacture including interconnected first and second discrete semiconductor body subassemblies disposed adjacent and parallel to each other, each semiconductor body subassembly including first top subcell, second (and possibly third) lattice matched middle subcells; a graded interlayer adjacent to the last middle solar subcell; and a bottom solar subcell adjacent to said graded interlayer being lattice mismatched with respect to the last middle solar subcell; wherein the interconnected subassemblies form at least a four junction solar cell by a series connection being formed between the bottom solar subcell in the first semiconductor body and the bottom solar subcell in the second semiconductor body.
US10714625B2

A semiconductor device capable of high speed operation is provided. Further, a highly reliable semiconductor device is provided. An oxide semiconductor having crystallinity is used for a semiconductor layer of a transistor. A channel formation region, a source region, and a drain region are formed in the semiconductor layer. The source region and the drain region are formed in such a manner that one or more of elements selected from rare gases and hydrogen are added to the semiconductor layer by an ion doping method or an ion implantation method with the use of a channel protective layer as a mask.
US10714611B2

A silicon carbide semiconductor device includes: a vertical semiconductor element, which includes: a semiconductor substrate made of silicon carbide and having a high impurity concentration layer on a back side and a drift layer on a front side; a base region made of silicon carbide on the drift layer; a source region arranged on the base region and made of silicon carbide; a deep layer disposed deeper than the base region; a trench gate structure including a gate insulation film arranged on an inner wall of a gate trench which is arranged deeper than the base region and shallower than the deep layer, and a gate electrode disposed on the gate insulation film; a source electrode electrically connected to the base region, the source region, and the deep layer; and a drain electrode electrically connected to the high impurity concentration layer.
US10714606B2

A semiconductor device includes a conductive substrate, a channel forming layer, a first electrode, and a second electrode. The channel forming layer is located above the conductive substrate and includes at least one hetero-junction structure. The hetero-junction structure includes a first GaN-type semiconductor layer providing a drift region and a second GaN-type semiconductor layer having a bandgap energy greater than the first GaN-type semiconductor layer. A total fixed charge quantity of charges in the first GaN-type layer and the second GaN-type layer is from 0.5×1013 to 1.5×1013 cm−2. The charges in the first GaN-type layer and the second GaN-type layer include charges generated by the polarization in the first GaN-type layer. Accordingly, the semiconductor device capable of improving a break-down voltage and decreasing an on-resistance is obtained.
US10714603B2

A semiconductor device is provided that includes: an edge termination portion provided in the peripheral portion of a semiconductor substrate; and an active portion surrounded by the edge termination portion, wherein the active portion includes: a plurality of gate trench portions arrayed along a predetermined array direction; a plurality of dummy trench portions provided between a gate trench portion closest to the edge termination portion among the plurality of gate trench portions and the edge termination portion; mesa regions located between each of the plurality of dummy trench portions; and accumulation regions with a first conductivity-type provided in at least a part of the mesa regions.
US10714602B2

A compound semiconductor device includes a heterojunction bipolar transistor and a bump. The heterojunction bipolar transistor includes a plurality of unit transistors. The bump is electrically connected to emitters of the plurality of unit transistors. The plurality of unit transistors are arranged in a first direction. The bump is disposed above the emitters of the plurality of unit transistors while extending in the first direction. The emitter of at least one of the plurality of unit transistors is displaced from a center line of the bump in the first direction toward a first side of a second direction which is perpendicular to the first direction. The emitter of at least another one of the plurality of unit transistors is displaced from the center line of the bump in the first direction toward a second side of the second direction.
US10714598B2

In a method for manufacturing a semiconductor device, fin structures each having an upper portion and a lower portion, are formed. The lower portion is embedded in an isolation insulating layer disposed over a substrate and the upper portion protrudes the isolation insulating layer. A gate dielectric layer is formed over the upper portion of each of the fin structures. A conductive layer is formed over the gate dielectric layer. A cap layer is formed over the conductive layer. An ion implantation operation is performed on the fin structures with the cap layer. The ion implantation operation is performed multiple times using different implantation angles to introduce ions into one side surface of each of the fin structures.
US10714590B2

Semiconductor structures and fabrication methods are provided. An exemplary fabrication method includes providing at least one fin on a semiconductor substrate; forming a stacked channel layer having at least one sacrificial layer on the fin and a channel layer on the sacrificial layer; forming a dummy gate structure on the stacked channel layer; forming openings in the stacked channel layer at both sides of the dummy gate structure; removing portions of the sacrificial layer under the dummy gate structure to form grooves on sidewall surfaces of the openings; and forming a protective layer in the grooves.
US10714589B2

A method produces a transistor, in particular a gallium nitride transistor based on high electron mobility. After a structured metal layer has been formed in a first gate region by a temporarily formed structured first photoresist layer, an intermediate layer has been deposited and a second insulation layer has been deposited, a second photoresist layer is structured in order to expose a second gate region, wherein subsequently a first field plate and a second field plate are formed as buried field plates on respective sides of the second gate region.
US10714585B2

A method for fabricating a gate-all-around field-effect-transistor device includes forming a plurality of first stacked structures, each including a first sacrificial layer and a first semiconductor layer; forming a first dummy gate structure across the first stacked structures and partially covering the top and the sidewall surfaces of each first stacked structure, and a first sidewall spacer on each sidewall surface of the first dummy gate structures; forming a first source/drain doped layer, and a dielectric structure exposing the top surfaces of the first dummy gate structure and each first sidewall spacer; removing the first dummy gate structure to form a first trench; removing a portion of the first sacrificial layer to form a first via which partially exposes the first source/drain doped layer; forming a first barrier layer on the first source/drain doped layer; and forming a first gate structure to fill the first trench and the first via.
US10714583B2

A MOS transistor is produced on and in an active zone which includes a source region and a drain region. The active zone is surrounded by an insulating region. A conductive gate region of the transistor has two flanks which extend transversely to a source-drain direction, and the conductive gate region overlaps two opposite edges of the active zone act overlap zones. The conductive gate region includes, at a location of at least one overlap zone, at least one conductive tag which projects from at least one flank at a foot of the conductive gate region. The conductive tag covers a part of the active zone and a part of the insulating region.
US10714579B2

A gate all around field effect transistor (GAAFET) device may include a plurality of nanostructures that are spaced apart from one another in a channel region of the FET device above a substrate. A gate electrode can be in a GAA arrangement with the plurality of nanostructures and a semiconductor pattern can be on one side of the gate electrode. A contact in a contact trench in the semiconductor pattern and a silicide film can extend conformally on a side wall of the contact trench to a level in the channel region that is lower an uppermost one of the plurality of nanostructures.
US10714574B2

A shield trench power device such as a trench MOSFET or IGBT employs a gate structure with an underlying polysilicon shield region that contacts a shield region in an epitaxial or crystalline layer of the device.
US10714566B2

A semiconductor device includes: a first GaN based semiconductor layer; a second GaN based semiconductor layer disposed on the first layer and having a bandgap larger than that of the first layer; a first electrode disposed on the second layer; a second electrode disposed on the second layer; a p-type third GaN based semiconductor layer disposed between the first electrode and the second electrode on the second layer; a third electrode disposed on the third layer; a p-type fourth GaN based semiconductor layer disposed directly on the second layer and disposed separated from the third layer; a first insulating film disposed on the fourth layer; and a first field plate electrode disposed interposing the first insulating film in a space with the fourth layer, the first field plate electrode being separated from the fourth layer, and the first field plate electrode electrically connected to the first electrode.
US10714562B2

The disclosure discloses a display panel and a display device, and the display panel includes: a display area, a wiring area, and a bending area connecting the display area and the wiring area. The bending area includes first edges and second edges; the first edges are edges at which the bending area is connected with the display area or the wiring area, and the second edges are other edges of the bending area than the first edges; and at least one of the second edges includes an inflexion at which the second edge is concaved toward the inside of the bending area.
US10714559B2

According to an exemplary embodiment of the present disclosure, an organic light emitting element includes: a first electrode; a second electrode overlapping the first electrode; and an emission layer disposed between the first electrode and the second electrode, wherein at least one of the first electrode and the second electrode includes a metal layer including a first material, an oxidation layer including a second material and disposed on two opposing surfaces of the metal layer, and a barrier layer disposed at a surface of the oxidation layer, and the second material has a smaller Gibbs free energy than that of the first material.
US10714553B2

An organic light-emitting display device includes a substrate having a display region and a peripheral region, a plurality of pixels on the substrate in the display region, a first wiring and a second wiring on the substrate in the peripheral region, a compensation layer on the first and second wirings, the compensation layer surrounding a top surface and a sidewall of each of the first and second wirings, and an encapsulation layer on the plurality of pixels and on the compensation layer.
US10714549B2

An organic EL display panel including organic light emitting layers, each continuous in a column direction, in gaps between column banks. The organic light emitting layer in a gap end region extending in the column direction from a column direction end of the gap to a reference position a defined distance from the column direction end towards a display region and within a peripheral region has a volume greater than volumes of the organic light emitting layers in gap end regions extending in the column direction from column direction ends of the gaps to the reference position.
US10714546B2

An organic light-emitting display device according to an embodiment includes a light-emitting structure. The light-emitting structure includes a lower electrode, an organic light-emitting layer, and an upper electrode, which are stacked one above another in sequence. The organic light-emitting display device further includes a bank insulating layer covering the edge of the lower electrode. The organic light-emitting layer extends onto the bank insulating layer. The organic light-emitting layer includes a side surface being vertically aligned with a side surface of the bank insulating layer.
US10714543B2

Disclosed are an optical fingerprint identification device and a display panel including the same. The optical fingerprint identification device includes a light emitting structure and a photosensitive sensor. The light emitting structure includes a transparent first electrode, an opaque second electrode, an electroluminescent layer between the first electrode and the second electrode, and a through hole penetrating the first electrode, the electroluminescent layer and the second electrode. The photosensitive sensor is disposed on a side of the second electrode facing away from the electroluminescent layer, and is configured to receive light rays transmitted through the through hole and acquire fingerprint information according to the received light rays.
US10714535B2

A method includes forming an insulator over a substrate. The insulator includes a first electrode, a second electrode, and a resistive element between the first electrode and the second electrode. The insulator is transformed into a resistor by applying a voltage to the insulator. The resistor is electrically connected to a transistor after transforming the insulator into the resistor.
US10714525B2

Methods and apparatus for integrating a CMOS image sensor and an image signal processor (ISP) together using an interposer to form a system in package device module are disclosed. The device module may comprise an interposer with a substrate. An interposer contact is formed within the substrate. A sensor device may be bonded to a surface of the interposer, wherein a sensor contact is bonded to a first end of the interposer contact. An ISP may be connected to the interposer, by bonding an ISP contact in the ISP to a second end of the interposer contact. An underfill layer may fill a gap between the interposer and the ISP. A printed circuit board (PCB) may further be connected to the interposer by way of a solder ball connected to another interposer contact. A thermal interface material may be in contact with the ISP and the PCB.
US10714522B2

An image sensor and a method for fabricating the same are provided, in which the image sensor includes a substrate including a first sensing region having a photoelectric device therein, a boundary isolation film partitioning the first sensing region, an inner reflection pattern film within the substrate in the sensing region, an infrared filter on the substrate, and a micro lens on the infrared filter.
US10714518B2

An imaging device includes: a container including a bottom plate and a side wall provided on an outer circumferential portion of the bottom plate; a step portion which is formed in a top outer circumferential portion of the side wall and includes: a horizontal surface that is located at a lower position than a top surface of the side wall; and a side surface that connects the top surface of the side wall to the horizontal surface; an imaging element mounted on the bottom plate; a glass lid which is bonded to the top surface of the side wall with a first adhesive layer; and a cover frame which is disposed on the step portion and bonded to the side surface of the step portion and an outer circumferential surface of the glass lid with a second adhesive layer.
US10714516B2

In some embodiments, the present disclosure relates to a method of forming an integrated chip. The method includes doping a substrate to form a first well region having a first doping type, and selectively etching an upper surface of the substrate to define a trench extending into the first well region. The trench is filled with one or more dielectric materials. The substrate is implanted to form a first photodiode region within the substrate. The first photodiode region is separated from the trench by the first well region. A first part of the one or more dielectric materials is removed from within the trench to expose a sidewall of the substrate that defines the trench and that is proximate to the first photodiode region. A doped epitaxial material having the first doping type is formed along the sidewall of the substrate.
US10714510B2

An array substrate includes: a base substrate; at least one first connection terminal, at least one second connection terminal, and at least one connection line, which are disposed on the base substrate and located in a non-display area of the array substrate, the at least one connection line being connected with the at least one first connection terminal and the at least one second connection terminal; at least one gate line disposed on the base substrate and located in a display area of the array substrate. The first connection terminal is for connecting with an IC, and the second connection terminal is for connecting with a flexible circuit board. A resistivity of at least a part of each of at least one of the at least one connection line is less than a resistivity of the at least one gate line.
US10714501B2

An electronic integrated circuit chip includes a first transistor arranged inside and on top of a solid substrate, a second transistor arranged inside and on top of a layer of semiconductor material on insulator having a first thickness, and a third transistor arranged inside and on top of a layer of semiconductor material on insulator having a second thickness. The second thickness is greater than the first thickness. The solid substrate extends underneath the layers of semiconductor material and is insulated from those layers by the insulator.
US10714495B2

A three-dimensional semiconductor memory device includes a peripheral logic structure including a plurality of peripheral logic circuits disposed on a semiconductor substrate, a horizontal semiconductor layer disposed on the peripheral logic structure, an electrode structure including a plurality of electrodes and insulating layers vertically and alternately stacked on the horizontal semiconductor layer, and a through-interconnection structure penetrating the electrode structure and the horizontal semiconductor layer and including a through-plug connected to the peripheral logic structure. A sidewall of a first insulating layer of the insulating layers is spaced apart from the through-plug by a first distance. A sidewall of a first electrode of the electrodes is spaced apart from the through-plug by a second distance greater than the first distance.
US10714494B2

Provided is a memory device including a substrate, a stack layer, a channel structure, a charge storage structure, a silicon nitride layer, and a buffer oxide layer. The stack layer is disposed over the substrate. The stack layer includes a plurality of dielectric layers and a plurality of conductive layers stacked alternately. The channel structure penetrates through the stack layer. The charge storage structure surrounds a sidewall of the channel structure. The silicon nitride layer surrounds the conductive layers. The buffer oxide layer is disposed between the conductive layers and the silicon nitride layer.
US10714480B2

A method for fabricating a semiconductor device includes the following steps. First, a contact structure is formed in the insulating layer. Preferably, the contact structure includes a bottom portion in part of the insulating layer and a top portion on part of the bottom portion and extending to cover part of the insulating layer. Next, a dielectric layer is formed on the bottom portion and the top portion, part of the dielectric layer is removed to form a first opening exposing part of the top portion and part of the bottom portion, and a capacitor is formed in the first opening and contacting the pad portion and the contact portion directly.
US10714466B1

A layout pattern for magnetoresistive random access memory (MRAM) includes: a first magnetic tunneling junction (MTJ) pattern on a substrate; a second MTJ pattern adjacent to the first MTJ pattern; and a first metal interconnection pattern between the first MTJ pattern and the second MTJ pattern, wherein the first MTJ pattern, the first metal interconnection pattern, and the second MTJ pattern comprise a staggered arrangement.
US10714447B2

An electrode terminal includes a body and a first bonding part. The body includes a first metal material. Then, the first bonding part is bonded to one end of the body, and includes a second metal material which is a clad material other than the first metal material. The first bonding part is ultrasonically bondable to a first bonded member. An elastic part which is elastically deformable is provided between the one end of the body and the other end of the body.
US10714446B2

An apparatus is provided which comprises: a substrate; a first active device adjacent to the substrate; a first set of one or more layers to interconnect with the first active device; a second set of one or more layers; a second active and/or passive device coupled to the second set of one or more layers; and a layer adjacent to one of the layers of the first and second sets, wherein the layer is to bond the one of the layers of the first and second sets.
US10714443B2

A semiconductor device including: a substrate including, in a central portion the substrate, n first element formation regions having a rectangular shape and arrayed along a first direction, and n+m second element formation regions arrayed along the first direction adjacent to the first element formation regions; plural projecting electrodes formed at each of the first and the second element formation regions; and plural dummy projecting electrodes formed, at a peripheral portion, overlapping a triangle defined by a first edge of the first element formation region that forms a boundary between the first element formation region and the peripheral portion, and a second edge of the second element formation region that is adjacent to a corner of the first edge and that forms a boundary between the second element formation region and the peripheral portion.
US10714442B2

Embodiments of the present disclosure include interconnect structures and methods of forming interconnect structures. An embodiment is an interconnect structure including a post-passivation interconnect (PPI) over a first substrate and a conductive connector on the PPI. The interconnect structure further includes a molding compound on a top surface of the PPI and surrounding a portion of the conductive connector, a top surface of the molding compound adjoining the conductive connector at an angle from about 10 degrees to about 60 degrees relative to a plane parallel with a major surface of the first substrate, the conductive connector having a first width at the adjoining top surface of the molding compound, and a second substrate over the conductive connector, the second substrate being mounted to the conductive connector.
US10714436B2

Systems and methods for achieving uniformity across a redistribution layer are described. One of the methods includes patterning a photoresist layer over a substrate. The patterning defines a region for a conductive line and a via disposed below the region for the conductive line. The method further includes depositing a conductive material in between the patterned photoresist layer, such that the conductive material fills the via and the region for the conductive line. The depositing causes an overgrowth of conductive material of the conductive line to form a bump of the conductive material over the via. The method also includes planarizing a top surface of the conductive line while maintaining the patterned photoresist layer present over the substrate. The planarizing is facilitated by exerting a horizontal shear force over the conductive line and the bump. The planarizing is performed to flatten the bump.
US10714435B2

The present application provides a fan-out antenna packaging structure and a method making the same. The method comprises: providing a carrier and forming a release layer on an upper surface of the carrier; forming a chip structure on an upper surface of the release layer, the chip structure comprises an unpacked chip and a contact pad disposed on and electrically connected to the unpacked chip; forming a plastic packaging layer packaging the chip structure on the upper surface of the release layer; removing the carrier and the release layer to expose the contact pad; forming a single-layer antenna structure and forming a redistribution layer on the surface where the contact pad is disposed; forming an under-bump metal layer on an upper surface of the redistribution layer; and forming a solder ball bump on an upper surface of the under-bump metal layer.
US10714430B2

Electromagnetic interference (EMI) shielding structures for use inside an electronic system are provided, which allow access for mold compound or cables by using baffle-like features on the shield's sides and/or top, as well as methods for shielding components from EMI, or for containing EMI. The structures block external RF from sensitive components and reduce EMI emission from internal, RF generating components.
US10714429B1

Various circuit board systems and methods of use and manufacture thereof are disclosed. A circuit board system can have a first circuit board including a substrate and a first component susceptible to electromagnetic interference carried by the substrate. The system can also include a second circuit board including a second substrate, and a shield engaged to the substrate of the first component, the shield at least partially covering the first component and being configured to protect the first component from electromagnetic interference, wherein the shield couples the substrate of the first circuit board to the substrate of the second circuit board.
US10714425B2

In an embodiment, an interposer includes multiple integrated circuits coupled thereto. The integrated circuits may include processors and non-processor functionality that may have previously been integrated with the processors on an SOC. By separating the functionality into multiple integrated circuits, the integrated circuits may be arranged on the interposer to spread out the potentially high power ICs and lower power ICs, interleaving them. In other embodiments, instances of the integrated circuits (e.g. processors) from different manufacturing process conditions may be selected to allow a mix of high performance, high power density integrated circuits and lower performance, low power density integrated circuits. In an embodiment, a phase change material may be in contact with the integrated circuits, providing a local reservoir to absorb heat. In an embodiment, a battery or display components may increase thermal mass and allow longer optimal performance state operation.
US10714416B2

A semiconductor package includes a circuit pattern extending in a horizontal direction. The circuit pattern is conductive. A first insulation layer is disposed on the circuit pattern. A semiconductor chip is disposed on the first insulation layer. The first insulation layer includes first protrusions which protrude from a bottom surface of the first insulation layer, penetrate through at least a portion of the circuit pattern, and have a mesh structure. A second protrusion protrudes from the bottom surface of the first insulation layer and penetrates at least a portion of the circuit pattern. The second protrusion is spaced apart from the semiconductor chip in the horizontal direction. The second protrusion has a width in the horizontal direction wider than that of each of the first protrusions.
US10714410B1

A semiconductor structure including a substrate, a first well, a field oxide layer, a first conductive line and a second conductive line is provided. The substrate has a first conductivity type. The first well is formed on the substrate and has a second conductivity type. The field oxide layer is disposed on the first well. The first conductive line is formed on the field oxide layer and is in direct contact with the field oxide layer. The second conductive line is formed on the field oxide layer and is in direct contact with the field oxide layer. The first conductive line is spaced apart from the second conductive line.
US10714402B2

This semiconductor chip package has opposed first surface and second surface, and includes a semiconductor chip having a circuit part and an electrode for supplying a voltage to the circuit part, a resin layer formed in a periphery of the semiconductor chip, a substrate that is disposed to face the first surface of the semiconductor chip and the resin layer, and a plurality of external terminals that are provided on the second surface of the semiconductor chip, each of the plurality of external terminals being electrically coupled to any of the plurality of electrodes.
US10714393B2

A method for forming contacts on a semiconductor device includes depositing conductive material in one or more trenches and over an etch stop layer to a height above the etch stop layer, patterning a resist on the conductive material with shapes over one or more source/drain regions in the one or more trenches, and forming one or more trench lines in the one or more trenches and one or more self-aligned contacts below the shapes, including subtractively etching the conductive material to remove the conductive material from over the etch stop layer and to recess the conductive material into the one or more trenches without the shapes.
US10714392B2

Techniques for optimizing junctions of a gate-all-around nanosheet device are provided. In one aspect, a method of forming a nanosheet device includes: forming an alternating series of first/second nanosheets including a first/second material as a stack on a wafer; forming a dummy gate(s) on the stack; patterning the stack into a fin stack(s) beneath the dummy gate(s); etching the fin stack(s) to selectively pull back the second nanosheets in the fin stack(s) forming pockets in the fin stack(s); filling the pockets with a strain-inducing material; burying the dummy gate(s) in a dielectric material; selectively removing the dummy gate(s) forming a gate trench(es) in the dielectric material; selectively removing either the first nanosheets or the second nanosheets from the fin stack(s); and forming a replacement gate(s) in the gate trench(es). A nanosheet device is also provided.
US10714391B2

A method of manufacturing a semiconductor device includes: providing a substrate including a first stacked fin structure for forming a channel of a first gate-all-around (GAA) transistor, the first stacked fin structure including an initial volume of first channel material, and a second stacked fin structure for forming a channel of a second GAA transistor, the second stacked fin structure including an initial volume of second channel material; reducing said initial volume of the second channel material relative to the initial volume of first channel material by a predetermined amount corresponding to a delay of the first GAA transistor; and forming first and second GAA gate structures around said first channel material and said second channel material respectively.
US10714389B2

Semiconductor devices and methods to fabricate the devices are provided. For example, a semiconductor device includes a back-end-of-line (BEOL) structure formed on a semiconductor substrate. The BEOL structure further includes at least one metallization layer comprising a pattern of elongated parallel metal lines. The pattern of elongated metal lines comprises a plurality of metal lines having a minimum width and at least one wider metal line having a width which is greater than the minimum width.
US10714387B2

An integrated circuit device includes a fin-type active region extending on a substrate in a first direction parallel to a top surface of the substrate; a gate structure extending on the fin-type active region and extending in a second direction parallel to the top surface of the substrate and different from the first direction; and source/drain regions in a recess region extending from one side of the gate structure into the fin-type active region, the source/drain regions including an upper semiconductor layer on an inner wall of the recess region, having a first impurity concentration, and including a gap; and a gap-fill semiconductor layer, which fills the gap and has a second impurity concentration that is greater than the first impurity concentration.
US10714386B2

Integrated circuit interconnect structures having a metal oxide adhesive layer between conductive interconnects and dielectric material, as well as related apparatuses and methods are disclosed herein. For example, in some embodiments, an integrated circuit interconnect structure may include a dielectric layer having 60% or more filler, a conductive layer, and a metal oxide adhesive layer between the dielectric and conductive layers. In some embodiments, the metal oxide adhesive layer may include one or more of aluminum oxide, chromium oxide, and nickel oxide.
US10714381B2

A semiconductor device and a method for fabricating the semiconductor device are provided. The method includes forming a first composite structure, including a plurality of first composite layers, on a substrate, and forming a second composite structure, including a plurality of second composite layers on a surface portion of the first composite structure. The method also includes forming a first mask layer covering a sidewall of the second composite structure and a surface portion of the first composite structure and exposing at least another surface portion of the first composite structure. In addition, the method includes forming a second mask layer, on a surface portion of the second composite structure and spaced apart from the first mask layer by a first annular opening. Further, the method includes etching a top first layer of the first composite layers and a top first layer of the second composite layers.
US10714377B2

A method of manufacturing a semiconductor device includes forming an auxiliary mask including a plurality of mask openings on a main surface of a crystalline semiconductor substrate. A porous structure is formed in the semiconductor substrate. The porous structure includes a porous layer at a distance to the main surface and porous columns that extend from the porous layer into direction of the main surface and that are laterally separated from each other by a non-porous portion. A non-porous device layer is formed on the non-porous portion and on the porous columns.
US10714369B2

A micro device transferring method and a micro device transferring apparatus are provided. The micro device transferring method exemplarily includes: providing a carrier substrate including a transparent base, a light radiation activated adhesiveness-loss layer located on a first surface of the transparent base and multiple micro devices arranged in an array on the light radiation activated adhesiveness-loss layer; locally irradiating the light radiation activated adhesiveness-loss layer from a second surface of the transparent base to reduce adhesiveness of multiple target areas of the light radiation activated adhesiveness-loss layer to the micro devices respectively located in the multiple target areas, the multiple target areas being areas corresponding to the micro devices to be transferred; picking up the micro devices in the multiple target areas; and aligning the picked up micro devices with corresponding locations of a receiving substrate, and releasing them onto the receiving substrate.
US10714358B2

A semiconductor device for high power application in which a novel semiconductor material having high mass productivity is provided. An oxide semiconductor film is formed, and then, first heat treatment is performed on the exposed oxide semiconductor film in order to reduce impurities such as moisture or hydrogen in the oxide semiconductor film. Next, in order to further reduce impurities such as moisture or hydrogen in the oxide semiconductor film, oxygen is added to the oxide semiconductor film by an ion implantation method, an ion doping method, or the like, and after that, second heat treatment is performed on the exposed oxide semiconductor film.
US10714349B2

A semiconductor device includes a fin structure disposed over a substrate, a gate structure and a source. The fin structure includes an upper layer being exposed from an isolation insulating layer. The gate structure disposed over part of the upper layer of the fin structure. The source includes the upper layer of the fin structure not covered by the gate structure. The upper layer of the fin structure of the source is covered by a crystal semiconductor layer. The crystal semiconductor layer is covered by a silicide layer formed by Si and a first metal element. The silicide layer is covered by a first metal layer. A second metal layer made of the first metal element is disposed between the first metal layer and the isolation insulating layer.
US10714344B2

Embodiments described herein relate generally to methods for forming a mask for patterning a feature in semiconductor processing. In an embodiment, a dielectric layer is formed over a substrate. A mask is formed over the dielectric layer. Forming the mask includes depositing a first layer over the dielectric layer; implanting in a first implant process a dopant species through a patterned material and into the first layer at a first energy; after implanting in the first implant process, implanting in a second implant process the dopant species through the patterned material and into the first layer at a second energy greater than the first energy; and forming mask portions of the mask comprising selectively removing portions of the first layer that are not implanted with the dopant species.
US10714328B2

In one embodiment, a semiconductor manufacturing apparatus includes a supporter configured to support a wafer. The apparatus further includes a first member including a first portion that faces a first region on an upper face of the wafer and a second portion that intervenes between the wafer and the first portion. The apparatus further includes a second member including a third portion that faces a second region on the upper face of the wafer and a fourth portion that intervenes between the wafer and the third portion. The apparatus further includes a first liquid feeder configured to feed a first liquid for processing the wafer to the first region, a first gas feeder configured to feed a first gas between the wafer and the first portion, and a second gas feeder configured to feed a second gas between the wafer and the second portion.
US10714326B2

This disclosure provides systems, methods, and apparatus related to laser ablation spectrometry systems. In one aspect, a system comprises a microscope, a laser, a continuous flow probe, and a gas confinement device. The laser is positioned to emit light through an objective lens of the microscope. The continuous flow probe is coupled to a spectrometer. An end of the continuous flow probe is positioned proximate a sample and between the sample and the objective lens. The gas confinement device defines a gas inlet, a chamber, a platform, a wall surrounding the platform, a plurality of vents, and a plurality of channels. Each of the plurality of vents is positioned to direct a gas substantially parallel to the platform, and each of the plurality of vents is defined in the wall. The plurality of channels is operable to provide fluid communication between the chamber and the plurality of vents.
US10714318B2

In a plasma processing method, a position in height direction of an upper surface of a focus ring surrounding an edge of a substrate mounted on a supporting table in a chamber of a plasma processing apparatus is set such that the position in height direction of the upper surface of the focus ring mounted on a mounting region of the supporting table is lower than a reference position that is a position in a height direction of an upper surface of the substrate. Plasma is generated in the chamber to perform plasma processing on the substrate in a state where the position in the height direction of the upper surface of the focus ring is maintained. A negative DC voltage is applied to the focus ring in a state where the position in height direction of the upper surface of the focus ring is maintained during the plasma generation.
US10714317B1

A workpiece processing system has a chamber with one or more chamber walls defining surfaces enclosing a chamber volume. One or more chamber wall heaters selectively heat the chamber walls to a chamber wall temperature. A workpiece support within the chamber selectively supports a workpiece having one or more materials having a respective condensation temperature, above which, the one or more materials are respectively in a gaseous state. A heater apparatus selectively heats the workpiece to a predetermined temperature. A controller heats the workpiece to the predetermined temperature by controlling the heater apparatus, heating the one or more materials to respectively form one or more outgassed materials within the chamber volume. The controller further controls the chamber wall temperature by controlling the chamber wall heaters, where the chamber wall temperature is greater than a condensation temperature of the outgassed materials, preventing condensation of the outgassed material on the chamber surfaces.
US10714312B2

In one embodiment, a data processing method is provided for generating writing data from design data and registering the writing data in a charged particle beam writing apparatus. The method includes generating the writing data by performing a plurality of conversion processes on a plurality of pieces of first frame data obtained through division of the design data corresponding to one chip, and performing a plurality of preprocessing processes on a plurality of pieces of second frame data obtained through division of the writing data of the chip, and registering the writing data of the chip in the charged particle beam writing apparatus. The plurality of conversion processes are performed in frame-basis pipeline processing, and the plurality of preprocessing processes are performed in frame-basis pipeline processing. The writing data is registered in the charged particle beam writing apparatus on a frame basis.
US10714311B2

An individual beam detector for multiple beams includes a thin film in which a passage hole smaller than a pitch between beams of multiple beams and larger than the diameter of a beam is formed and through which the multiple beams can penetrate, a support base to support the thin film in which an opening is formed under the region including the passage hole, and the width size of the opening is formed to have a temperature of the periphery of the passage hole higher than an evaporation temperature of impurities adhering to the periphery in the case that the thin film is irradiated with the multiple beams, and a sensor arranged, at the position away from the thin film by a distance based on which a detection target beam having passed the passage hole can be detected by the sensor as a detection value with contrast discernible.
US10714301B1

Provided herein are approaches for reducing particles in an ion implanter. An electrostatic filter may include a housing and a plurality of conductive beam optics within the housing. The conductive beam optics are arranged around an ion beam-line directed towards a wafer, and may include entrance aperture electrodes proximate an entrance aperture of the housing. The conductive beam optics may further include energetic electrodes downstream along the ion beam-line from the entrance aperture electrodes, and ground electrodes downstream from the energetic electrodes. The energetic electrodes are positioned farther away from the ion beam-line than the entrance electrodes and the ground electrodes, thus causing the energetic electrodes to be physically blocked from impact by an envelope of back-sputter material returning from the wafer. The electrostatic filter may further include an electrical system for independently delivering a voltage and a current to each of the conductive beam optics.
US10714290B2

An electromagnetic relay is provided with a housing; a first fixed contact terminal and a second fixed contact terminal; a movable contact, a movable shaft with one end connected to the movable contact, and a coil spring placed between the movable contact and an insulating wall in a chamber in the housing. The coil spring configured to bias movable contact points toward the opposing fixed contact points. The fixed contact terminals each includes: a contact arrangement portion in the chamber; an external terminal arranged outside the housing; and an intermediate portion held by the insulating wall and connecting a contact arrangement portion and an external terminal; the intermediate portion curves near the second compartment relative a virtual line connecting both ends thereof in the extension direction.
US10714287B2

A fuse element for an electric circuit, arranged on a circuit board of the electric circuit, has a surface area for fastening and establishing an electric contact on the circuit board, a first deforming area adjacent the surface area, a second deforming area connected to the first deforming area via a central area, the second deforming area including a contact area that abuts the circuit board, and a hook-shaped element insertable into an opening adjacent the contact area, the hook-shaped element is insertable into the opening by elastic deformation of the fuse element in the direction of the circuit board and, after insertion of the hook-shaped element into the opening and positive holding of the hook-shaped element on a lower surface of the circuit board, the first and second deforming areas exert an elastic force on the surface area in the direction away from the circuit board.
US10714278B2

A switch device structure provides an ensuring system to improve the shortcoming of the conventional switch device. The switch device structure includes a main body and an operation button assembled with the main body. The main body defines a chamber in which a base seat is assembled. An operation body and a wire connection module are disposed on the base seat. The base seat is formed with a cavity in which an elastic unit is mounted. The elastic unit includes a fixed section and a free section. In response to the move of the operation body and with the fixed section serving as a fulcrum, the free section of the elastic unit can push a second contact of the wire connection module into contact with a first contact to close the circuit or away from the first contact to open the circuit.
US10714274B2

A medium voltage circuit switch or breaker includes: at least one movable contact; a fixed contact; and a mechanical or magnetical drive system, which moves the at least one movable contact to a closed or opened position by a movement of a rod and/or a lever. The mechanical or magnetical drive system is linked to a switching generating signal. The mechanical or magnetical drive system includes at least one pyrotechnical actuator or gas generator. The pyrotechnical actuator or the gas generator is linkable to the switching generating signal of the mechanical or magnetical drive system.
US10714264B2

A metal terminal is connectable to terminal electrodes of chip components arranged side by side. The metal terminal includes units corresponding to each chip. Each unit includes an electrode facing portion, a pair of upper and lower holding portions, a mount portion, and protrusions. The electrode facing portion faces the electrode of the chip. The pair of upper and lower holding portions holds the chip. The mount portion is located below the lower holding portion of the electrode facing portion. The protrusions protrude from the electrode facing portion toward the electrode. The protrusions in each unit are arranged substantially line-symmetrically to a virtual center line passing through a middle point between the upper and lower holding portions.
US10714262B2

A multilayer capacitor includes: a body including dielectric layers and internal electrodes alternately disposed therein; and external electrodes disposed on the body and connected to the internal electrodes, respectively. Each of the internal electrodes includes a Ni grain, ceramics distributed in the Ni grain, a first coating layer surrounding the Ni grain, and second coating layers surrounding the ceramics.
US10714261B2

A multilayer ceramic capacitor includes a laminate including dielectric layers and internal electrode layers, and first and second external electrodes respectively including first and second base electrode layers. The internal electrode layers, and the first and second base electrode layers are connected through first and second alloy layers that cover first and second end surfaces of the laminate. A predetermined portion of ridges between each of the first and second end surfaces, and each of first and second principal surfaces and first and second side surfaces, among ridges of the laminate, has a curvature radius of about 5.4 μm or more and about 10 μm or less, and the first and second external electrodes extend from the first and second end surfaces to cover the ridges.
US10714260B2

A multilayer ceramic capacitor includes a body including first and second internal electrodes facing each other with respective dielectric layers interposed therebetween, and first and second external electrodes disposed on an external surface of the body and electrically connected to the first and second internal electrodes, respectively. Each of the first and second external electrodes includes a first electrode layer containing any one selected from the group consisting of TiW, TiN, and TaN, or a combination thereof, and a second electrode layer disposed on the first electrode layer.
US10714255B2

A common mode choke coil includes a core and a first winding, a second winding, and a third winding that are wrapped around the core. A number of turns in the third winding is less than a number of turns in the first winding and a number of turns in the second winding.
US10714249B2

A three-dimensional printing device includes a movable unit with a superconductor and a printing head arrangement for printing a printing material, a magnetic field generator adapted to generate a magnetic field, and a control device. The magnetic field generator and the movable unit are adapted for coupling in a force-locking manner by means of frozen magnetic flux, and the controlling device is adapted to control a magnetic field strength of the magnetic field generator.
US10714245B2

Disclosed herein is a method for manufacturing an R-T-B permanent magnet and the magnet made with the method. The method may include preparation of strip pieces by melting and casting, preparing coarse powder by hydrogen decrepitation of the strip pieces; milling the powder into fine powder; pressing the fine powder is pressed to form a compact, pre-sintering the compact in vacuum or inert gas, machining the pre-sintered block to a desired shape; and dispersing the heavy rare earth compound powder into an organic solvent to prepare a slurry and a second sintering step.
US10714238B2

The problem is to attain a joint for multi-core superconducting wires having a high critical current property. The joint for superconducting wires of the present invention has a first sintered body containing MgB2 configured to fix a plurality of superconducting wires, and a second sintered body containing MgB2 configured to joint the superconducting wires.
US10714237B1

A differential pair cable assembly includes a cable having a twin axial cable core including first and second conductors conveying differential signals and a cable shield. The cable assembly includes first and second contacts and a housing holding the first and second contacts. The cable assembly includes a shield having a shield cavity that receives the housing and the end of the cable and is electrically connected to the cable shield. The shield provides electrical shielding for the first and second contacts. The shield, the housing, and the contacts define a mating interface of the cable assembly configured to be mated to a mating component.
US10714226B2

The disclosure pertains to a strontium-90 sealed radiological or radioactive source, such as may be used with treatment of the eye or other medical or industrial processes. The sealed radiological source includes a toroidal shaped strontium radiological insert within an encapsulation. The encapsulation includes increased shielding in the center thereof.
US10714217B2

Systems and methods are provided for eye health and vision examinations. A customer diagnostic center is configured to generate customer examination data pertaining to an examination of a customer's eye. The customer diagnostic center provides a user interface for communicating with a customer and ophthalmic equipment for administering tests to the customer. A diagnostic center server is configured to receive the customer examination data from the customer diagnostic center over a network and allow the customer examination data to be accessed by an eye-care practitioner. A practitioner device associated with the eye-care practitioner is configured to receive the customer examination data from the diagnostic center server and display at least a portion of the customer examination data to the eye-care practitioner. Customer evaluation data is generated pertaining to the eye-care practitioner's evaluation of the customer examination data. An eye health report is provided to the customer via the network.
US10714216B1

Embodiments of the present inventive concept leverage RSS patterns, accelerometer patterns, hygiene event information, and hub locations to increase accuracy of room-level positioning of objects and people, and to ensure a high accuracy detection of zone entry and/or exit times in an indoor environment, all of which facilitate an accurate hand hygiene compliance monitoring system in hospitals and other medical facilities, as well as a variety of other applications.
US10714209B2

Characteristics of proteins, peptides, and/or peptoids can be determined via two-dimensional correlation spectroscopy and/or two-dimensional co-distribution spectroscopies. Spectral data of the proteins, peptides, and/or peptoids can be obtained with respect to an applied perturbation. two-dimensional co-distribution analysis can be applied to generate an asynchronous co-distribution plot for the proteins, peptides, and/or peptoids to define the population of proteins in solution. In the two-dimensional asynchronous plot, a cross peak can be identified as correlating with an auto peak in the two-dimensional correlation synchronous plot associated with aggregation of the proteins, peptides, and/or peptoids. The two-dimensional asynchronous cross peak can be used to determine an order of a distributed presence of spectral intensities with respect to the applied perturbation. For example, for two wavenumbers v1 and v2, the value of the cross peak corresponding to the two wavenumbers can indicate a presence of spectral intensity at v1 relative to the presence of spectral intensity at v2.
US10714208B2

The present invention relates to computer-implemented methods and system for analysing a biomarker which cycles in a subject. In some other aspects, the present invention relates to analysing a biomarker which at least initially increases or decreases in amount in a subject following a treatment for a disease. In further aspects, the present invention relates to computer-implemented methods and systems for determining a preferred time to administer a therapy to treat a disease in a subject. The present invention also relates to computer program product to implement the methods. Further, the present invention relates to methods of determining the timing of treating a disease in a subject in which the immune system is cycling.
US10714207B2

A scannable-latch random access memory (SLRAM) is disclosed. The SLRAM includes two rows of memory cells. The SLRAM includes a functional data input, a scan data input, a first and second functional data outputs, a scan data output, and a scan enable. The functional data input is connected to a first memory cell in a first and second rows of memory cells. The scan data input is connected to the first memory cell in the first or second row of memory cells. The first and second functional data outputs are connected to a last memory cell in the first and second row of memory cells, respectively. The scan data output is connected to the last memory cell in the first or second row of memory cells. The scan enable allows data to be output from the scan data output or the first and second functional data outputs.
US10714197B1

A memory device and a program verification method thereof are provided. The write verification method includes: reading a previous page to obtain first read data, writing input data to a current page, reading the previous page or the current page to obtain second read data, and analyzing at least one of the first read data and the second read data to determine whether to back up at least one of the first read data and the input data to a redundant block of the memory device.
US10714193B2

A data storage apparatus and a method for preventing data error using the same are provided. The data storage apparatus includes a memory and a memory controller. The memory includes a plurality of blocks. The memory controller is coupled to the memory and configured to perform the following operations: recording a read count of a target block of the memory; performing an error bit check on a free storage space of the target block when the read count of the target block meets a condition; and programming a dummy data to the free storage space of the target block in response to the determination that the check result is negative.
US10714191B2

Methods of operating a memory include determining a voltage level of a plurality of voltage levels at which a memory cell is deemed to first activate in response to applying the to a control gate of that memory cell for each memory cell of a plurality of memory cells, determining a plurality of voltage level distributions from numbers of memory cells of a first subset of memory cells deemed to first activate at each voltage level of the plurality of voltage levels, determining a transition between a pair of voltage level distributions for each adjacent pair of voltage level distributions, and assigning a respective data state to each memory cell of a second subset of memory cells responsive to the determined voltage level at which that memory cell is deemed to first activate and respective voltage levels of the transitions for each adjacent pair of voltage level distributions.
US10714183B2

A high voltage switch circuit includes a first transistor, a first depletion mode transistor, a level shifter, a control signal generator, a second transistor and a second depletion mode transistor. The first transistor transmits the second driving voltage to an output terminal in response to a first gate signal. The first depletion mode transistor transmits the second driving voltage to the first transistor in response to feedback from the output terminal. The control signal generator generates first and second control signals in response to a level-shifted enable signal. The second transistor has a gate electrode connected to the first voltage and is turned on and off in response to the second control signal at a first end of the second transistor. The second depletion mode transistor is connected between a second end of the second transistor and the output terminal, and has a gate electrode receiving the first control signal.
US10714182B2

A semiconductor memory device comprises a memory string that includes a plurality of memory cells electrically connected in series, the memory cells including first to fourth memory cells, first to fourth word lines that are electrically connected to gates of the first to fourth memory cells, respectively, a voltage generation circuit configured to generate a first voltage, a first circuit configured to output the first voltage to one of first and second wires, a second circuit configured to connect the first and second wires to the first and second word lines, respectively, and a third circuit configured to connect the first and second wires to the third and fourth word lines, respectively.
US10714180B2

A configuration memory cell includes a latch portion including a cross-coupled latch having complementary output nodes, and a programmable read-only memory (PROM) portion coupled to one of the complementary output nodes of the latch portion, the PROM portion including a programmable and erasable ReRAM device.
US10714174B2

A resistive memory device includes: a normal cell array suitable for including a plurality of memory cells and generating a cell current according to a resistance state of a memory cell selected based on an input address; a reference cell array suitable for including a plurality of sub-arrays each including a predetermined number of memory cells, and generating a reference current according to a combination of resistance states of memory cells of a sub-array, the sub-array being selected based on a reference selection signal; a sense amplifier circuit suitable for sensing and amplifying a signal indicative of data of the selected memory cell based on the cell current and the reference current during a read operation; and a reference cell selector suitable for generating the reference selection signal, the sub-array in the reference cell array corresponding to a position of the selected memory cell in the normal cell array.
US10714173B2

A resistive RAM (RRAM) device has a bit line, a word line, a source line carrying a bias voltage that is a substantially static and non-negative voltage, an RRAM cell, and a bit line control coupled to the bit line circuit. The RRAM cell includes a gate node coupled to the word line, a bias node coupled to the source line, and a bit line node coupled to the bit line. The bit line control circuit is configured to generate non-negative command voltages to perform respective memory operations on the RRAM cell.
US10714168B2

A static random access memory (SRAM) array is provided. The SRAM array includes a first bit cell array and a second bit cell array arranged along a first direction. The SRAM array includes a strap cell arranged along a second direction and positioned between the first bit cell array and the second bit cell array along the first direction. The SRAM array includes a deep N-type well region underlying and connected to the first N-type well region and the second N-type well region.
US10714167B2

Some embodiments include an apparatus having first and second comparative bitlines extending horizontally and coupled with a sense amplifier. First memory cell structures are coupled with the first comparative bitline. Each of the first memory cell structures has a first transistor associated with a first capacitor. Second memory cell structures are coupled with the second comparative bitline. Each of the second memory cell structures has a second transistor associated with a second capacitor. Each of the first capacitors has a container-shaped first node and is vertically offset from an associated first sister capacitor which is a mirror image of its associated first capacitor along a horizontal plane. Each of the second capacitors has a container-shaped first node and is vertically offset from an associated second sister capacitor which is a mirror image of its associated second capacitor along the horizontal plane.
US10714165B2

Provided is a semiconductor controller that includes: an input buffer for comparing a data signal received from the outside with a reference voltage and storing the data signal; and a reference voltage control unit for generating the reference voltage corresponding to a protocol condition of the received data signal set between a first protocol condition and a second protocol condition and providing the reference voltage to the input buffer.
US10714159B2

Methods, systems, and devices for a latency indication in a memory system or sub-system are described. An interface controller of a memory system may transmit an indication of a time delay (e.g., a wait signal) to a host in response to receiving an access command from the host. The interface controller may transmit such an indication when a latency associated with performing the access command is likely to be greater than a latency anticipated by the host. The interface controller may determine a time delay based on a status of buffer or a status of memory device, or both. The interface controller may use a pin designated and configured to transmit a command or control information to the host when transmitting a signal including an indication of a time delay. The interface controller may use a quantity, duration, or pattern of pulses to indicate a duration of a time delay.
US10714156B2

Apparatuses and methods for trimming input buffers based on identified mismatches. An example apparatus includes an input buffer having a first input stage circuit configured to receive a first signal, a second input stage circuit configured to receive a second signal, and an output stage coupled to the first and second input stage circuits and configured to provide an output signal. The first input stage circuit includes serially-coupled transistor pairs that are each coupled between the output stage and a bias voltage. Each of the plurality of serially-coupled transistors pairs are selectively enabled in response to a respective enable signal. The apparatus further including a trim circuit coupled to the first input stage circuit and comprising a plurality of programmable components. The trim circuit is configured to be programmed to provide the respective enable signals based on a detected transition voltage offset relative to a target transition voltage.
US10714153B2

Memory devices may employ flip-flops with paired transistors in sense amplifying circuitry to sense charges stored in memory cells. Paired transistors may present mismatches in electrical characteristics, which may affect the sensitivity of the sense amplifying circuitry. Embodiments include systems and methods that compensate and/or mitigate mismatches in the electrical characteristics of the paired transistors. To that end, the memory devices may sense the mismatches during a compensation period and pre-compensate the read-out of data lines to improve the sensibility of the sense amplifying circuitry.
US10714151B2

The purposes of the present invention are: to provide a layered semiconductor device capable of improving production yield; and to provide a method for producing said layered semiconductor device. This layered semiconductor device has, layered therein, a plurality of semiconductor chips, a reserve semiconductor chip which is used as a reserve for the semiconductor chips, and a control chip for controlling the operating states of the plurality of semiconductor chips and the operating state of the reserve semiconductor chip. In such a configuration, the semiconductor chips and the reserve semiconductor chip include contactless communication units and operating switches. The semiconductor chips and the reserve semiconductor chip are capable of contactlessly communicating with another of the semiconductor chips via the contactless communication units. The control chip controls the operating states of the semiconductor chips by switching the operating switches of the semiconductor chips, and controls the operating state of the reserve semiconductor chip by switching the operating switch of the reserve semiconductor chip.
US10714146B2

It is possible for the viewer to readily and accurately reach a desired image/audio reproduction start position in reproduction.A time code is added to moving image data obtained by imaging a state in which a person who writes a description is explaining while writing a description in a description portion and audio data corresponding to the moving image data to record the data in a recording unit. The moving image data is processed to determine a written portion written in the description portion, and index image data is generated to display each portion determined as the written portion as an index description, and the index image data is recorded in the recording portion. To the index image data, a value of the time code corresponding to description time is added as a timestamp, in association with each pixel constituting the index description.
US10714144B2

Systems and methods for tagging video content are disclosed. A method includes: receiving a video stream from a user computer device, the video stream including audio data and video data; determining a candidate audio tag based on analyzing the audio data; establishing an audio confidence score of the candidate audio tag based on the analyzing of the audio data; determining a candidate video tag based on analyzing the video data; establishing a video confidence score of the candidate video tag based on the analyzing of the video data; determining a correlation factor of the candidate audio tag relative to the candidate video tag; and assigning a tag to a portion in the video stream based on the correlation factor exceeding a correlation threshold value and at least one of the audio confidence score exceeding an audio threshold value and the video confidence score exceeding a video threshold value.
US10714142B2

According to one embodiment, a disk device includes a disk, a head that performs data read/write processing on a recording region of the disk, a controller that performs a media scan processing for detecting the presence or absence of a defect in a sector in the recording region of the disk in track unit. When the controller performs the media scan processing on a first sector and a second sector arranged in the track, and a third sector arranged between the first sector and the second sector, the controller performs skip processing in which the controller scans the first sector and the second sector, and does not scan the third sector.
US10714140B2

A non-transitory tangible recording medium storing AV data having a system stream file is provided. The system stream file is played by a playback device. The system stream file includes an individual decryption key and a common decryption key. The individual decryption key is owned individually by each of multiple playback devices. The common decryption key is owned in common by the playback devices. The system stream file includes a first system stream file to be played back using both the individual decryption key and the common decryption key. The system stream file also includes a second system stream file to be played back using only the common decryption key among the individual decryption key and the common decryption key.
US10714139B2

The magnetic recording medium includes a non-magnetic support and a magnetic layer containing ferromagnetic powder and a binder, in which the ferromagnetic powder is ferromagnetic hexagonal ferrite powder, the magnetic layer contains an abrasive, an intensity ratio of a peak intensity of a diffraction peak of (110) plane of a crystal structure of the hexagonal ferrite, determined by performing X-ray diffraction analysis on the magnetic layer by using an In-Plane method, to a peak intensity of a diffraction peak of (114) plane of the crystal structure is equal to or higher than 0.5 and equal to or lower than 4.0, a squareness ratio of the magnetic recording medium in a vertical direction is equal to or higher than 0.65 and equal to or lower than 1.00, and a contact angle with 1-bromonaphthalene measured within a surface of the magnetic layer is in a range of 50.0° to 55.0°.
US10714138B2

The magnetic recording medium includes at least a nonmagnetic substrate and a magnetic recording layer, the magnetic recording layer consists of a first magnetic recording layer or a plurality of layers including at least the first magnetic recording layer and a second magnetic recording layer, the first magnetic recording layer has a granular structure including a first magnetic crystal grain and a first nonmagnetic crystal grain boundary, the first magnetic crystal grain consists of an ordered alloy having Fe, Pt and Rh, the first nonmagnetic crystal grain boundary consists of carbon, boron or a combination thereof, the second magnetic recording layer has a granular structure including a second magnetic crystal grain and a second nonmagnetic crystal grain boundary, the second magnetic crystal grain consists of an FePt ordered alloy or an ordered alloy having Fe, Pt and Rh, and the second nonmagnetic crystal grain boundary includes carbon.
US10714132B1

A perpendicular magnetic recording writer has a main pole (MP) with a first flux guiding (FG) device in a write gap between the MP trailing side and a trailing shield, a second FG device in each side gap and adjoining a MP side, and third FG device in the leading gap and adjoining the MP leading side. At least one of a first and second non-magnetic conductive layer (NMC1 and NMC2) contacts the third FG device and second FG devices, respectively, instead of a conventional leading shield and side shield. Each FG device has a flux guiding layer (FGL) with a magnetization that flips to oppose a gap flux field when a current is applied across the respective gap thereby enhancing the MP write field. NMC1 and NMC2 allow better wear and corrosion resistance in addition to improved return field and down-track field gradient, and acceptable side shield stray field.
US10714117B2

A method for operating a voice trigger is provided. In some implementations, the method is performed at an electronic device including one or more processors and memory storing instructions for execution by the one or more processors. The method includes receiving a sound input. The sound input may correspond to a spoken word or phrase, or a portion thereof. The method includes determining whether at least a portion of the sound input corresponds to a predetermined type of sound, such as a human voice. The method includes, upon a determination that at least a portion of the sound input corresponds to the predetermined type, determining whether the sound input includes predetermined content, such as a predetermined trigger word or phrase. The method also includes, upon a determination that the sound input includes the predetermined content, initiating a speech-based service, such as a voice-based digital assistant.
US10714116B2

Various technologies described herein pertain to active noise cancellation in the interior of a vehicle. In exemplary embodiments, a microphone mounted on the vehicle outputs an audio signal indicative of noise emitted by a noise source. A computing system of the vehicle determines a position of the noise source based upon sensor signals output by sensors mounted on the vehicle. The computing system further determines a position of a passenger in the vehicle based upon a sensor mounted inside the vehicle. The computing system generates a complementary signal that is configured to attenuate the noise based upon the audio signal, the position of the noise source, and the position of the passenger. The complementary signal is then output by way of a speaker in the interior of the vehicle.
US10714115B2

A set of signal measures is sent, wherein each signal measure in the set of signal measures corresponds to a respective audio signal received by a playback device in a media playback system and is processed based on a first set of audio processing algorithms. A plurality of signal measures is identified in the set of signal measures. Audio signals corresponding to the identified plurality of signal measures are processed by one or more devices in the media playback system to improve a signal measure of each of the audio signals. The audio signals are processed based on a second set of audio processing algorithms. The processed audio signals are combined into a combined audio signal.
US10714109B2

One aspect of the disclosure provides a device, comprising: an allocation module, for determining one or more metrics of each of a plurality of data streams; a compression module, for compressing each of the plurality of data streams and generating a plurality of compressed data streams, the compression module applying a compression ratio that varies as a function of the metrics determined by the allocation module; and a buffer memory, for storing the plurality of compressed data streams.
US10714108B2

The purpose of the present invention is to estimate, with a small amount of computation, a linear prediction synthesis filter after conversion of an internal sampling frequency. A linear prediction coefficient conversion device is a device that converts first linear prediction coefficients calculated at a first sampling frequency to second linear prediction coefficients at a second sampling frequency different from the first sampling frequency, which includes a means for calculating, on the real axis of the unit circle, a power spectrum corresponding to the second linear prediction coefficients at the second sampling frequency based on the first linear prediction coefficients or an equivalent parameter, a means for calculating, on the real axis of the unit circle, autocorrelation coefficients from the power spectrum, and a means for converting the autocorrelation coefficients to the second linear prediction coefficients at the second sampling frequency.
US10714105B2

A machine may be configured to generate one or more audio fingerprints of one or more segments of audio data. The machine may access audio data to be fingerprinted and divide the audio data into segments. For any given segment, the machine may generate a spectral representation from the segment; generate a vector from the spectral representation; generate an ordered set of permutations of the vector; generate an ordered set of numbers from the permutations of the vector; and generate a fingerprint of the segment of the audio data, which may be considered a sub-fingerprint of the audio data. In addition, the machine or a separate device may be configured to determine a likelihood that candidate audio data matches reference audio data.
US10714100B2

An apparatus includes a receiver configured to receive at least one encoded signal that includes inter-channel bandwidth extension (BWE) parameters. The device includes a decoder configured to generate a mid-channel time-domain high-band signal by performing bandwidth extension based on the at least one encoded signal. The decoder is configured to generate, based on the mid-channel time-domain high-band signal and the inter-channel BWE parameters, a first channel time-domain high-band signal and a second channel time-domain high-band signal. The first channel time-domain high-band signal is selectively based on an adjustment spectral shape parameter responsive to whether the inter-channel BWE parameters include an adjustment spectral shape parameter. The decoder is configured to generate a target channel signal based at least in part on the first channel time-domain high-band signal, and to generate a reference channel signal based at least in part on the second channel time-domain high-band signal.
US10714099B2

The present document relates to a method of layered encoding of a frame of a compressed higher-order Ambisonics, HOA, representation of a sound or sound field. The compressed HOA representation comprises a plurality of transport signals. The method comprises assigning the plurality of transport signals to a plurality of hierarchical layers, the plurality of layers including a base layer and one or more hierarchical enhancement layers, generating, for each layer, a respective HOA extension payload including side information for parametrically enhancing a reconstructed HOA representation obtainable from the transport signals assigned to the respective layer and any layers lower than the respective layer, assigning the generated HOA extension payloads to their respective layers, and signaling the generated HOA extension payloads in an output bitstream. The present document further relates to a method of decoding a frame of a compressed HOA representation of a sound or sound field, an encoder and a decoder for layered coding of a compressed HOA representation, and a data structure representing a frame of a compressed HOA representation of a sound or sound field.
US10714095B2

This relates to systems and processes for using a virtual assistant to control electronic devices. In one example process, a user can speak an input in natural language form to a user device to control one or more electronic devices. The user device can transmit the user speech to a server to be converted into a textual representation. The server can identify the one or more electronic devices and appropriate commands to be performed by the one or more electronic devices based on the textual representation. The identified one or more devices and commands to be performed can be transmitted back to the user device, which can forward the commands to the appropriate one or more electronic devices for execution. In response to receiving the commands, the one or more electronic devices can perform the commands and transmit their current states to the user device.
US10714092B2

A sensor processing unit comprises a sensor processor. The sensor processor is configured to communicatively couple with a microphone. The sensor processor is configured to acquire, from the microphone, a sample captured by the microphone from an environment in which the microphone is disposed. The sensor processor is configured to perform music activity detection on the audio sample to detect for music within the audio sample. Responsive to detection of music within the audio sample, the sensor processor is configured to send a music detection signal to an external processor located external to the sensor processing unit, the music detection signal indicating that music has been detected in the environment.
US10714091B2

Systems and methods to process and/or present information relating to voice messages for a user that are received from other persons. In one embodiment, a method implemented in a data processing system includes: receiving first data associated with prior communications or activities for a first user on a mobile device; receiving a voice message for the first user; transcribing the voice message using the first data to provide a transcribed message; and sending the transcribed message to the mobile device for display to the user.
US10714070B1

A sound isolation device includes an acoustic scatterer that has an acoustic monopole response and an acoustic dipole response. The acoustic dipole response and the acoustic monopole response of the acoustic scatterer may have substantially similar resonant frequencies. The device may include a plurality of acoustic scatters forming an array of equally spaced apart acoustic scatterers.
US10714067B1

A controller, method, system, and computer-readable medium, for producing control signals. The controller comprises a pressure sensor, a hinged input mechanism configured to receive input forces and direct them towards the sensor, and a processor. The processor is configured to receive a signal from the pressure sensor indicating that the hinged input mechanism is being depressed or released and, based on the received signal, to determine, during a time interval, a rate of change of pressure detected at the sensor. The processor also generates a control signal associated with the hinged input mechanism, wherein the control signal comprises a velocity characteristic representing a speed at which the hinged input mechanism is depressed or released, and the velocity characteristic is based at least partly on the determined rate of change of pressure. In one example embodiment, the control signal is an audio control.
US10714065B2

An apparatus, method, and computer-readable storage medium that generate a harmonized musical piece. The method includes receiving a chord selection including a musical key and a scale selection, generating, within a digital audio work session, a chord progression sequence based on the received chord selection, in response to a detected chord selection change, modifying the chord progression sequence to include a chord progression corresponding to the chord selection change, setting the chord progression sequence as a master sequence, in response to detecting a second progression sequence within the digital audio work session, transmitting an identifier to the second progression sequence setting it as a slave sequence, and establishing a synchronized communication link between the master and the slave sequences such that changes made in the master sequence are automatically effectuated in the slave sequence, and combining the master sequence and the slave sequence to form a composed musical piece.
US10714061B2

A compact drum kit comprising a body having a hollow interior defined by a top, a bottom, and three or more sides connecting the top and bottom, a sound hole, a plurality of component mounting shafts mounted in the hollow interior of the body and protruding through a plurality of openings in the top, a plurality of leg shafts mounted in the hollow interior of the body and protruding through a plurality of openings in the bottom, one or more percussion modules that attach to one or more of the plurality of component mounting shafts, wherein each percussion module produces a sound in response to being struck or scraped, and a kick pedal including a beater positioned to strike a first side of the three or more sides and produce a sound.
US10714054B2

The relative luminance value of each subpixel in the panel unit area is determined by calculation of the relative luminance value and the weight of the plurality of frame pixels. The plurality of frame pixels constitute a plurality of frame pixel lines extending in the first direction and a plurality of frame pixel lines extending in the second direction, respectively. A first frame pixel line extending in the first direction that includes the closest frame pixel and a second frame pixel line extending in the second direction that includes the closest frame pixel are composed of frame pixels assigned positive weights. Each of the frame pixel lines except for the first frame pixel line and the second frame pixel line includes a frame pixel assigned a negative weight.
US10714040B2

A display device, the driving circuit and the driving method for the same are provided. Wherein, the input module raises a control end voltage signal Qn to a first high electrical level based on the gate scanning signal Gn−2; the raise module raises the signal Qn from the first high electrical level to a second high electrical level based on the clock signal CLKn−2, the clock signal CLKn−1 and the control end voltage signal Qn−1; the output module couples the control end voltage signal Qn from the second high electrical level to a third high electrical level based on the clock signal CLKn and outputs a gate scanning signal Gn based on the signals Qn and CLKn; the feedback module depresses the coupled control end voltage signal Qn; and the control module controls a depression maintain module to maintain the low voltage of the control end voltage signal Qn.
US10714037B2

A display device includes: a display unit including sub-pixels; and a signal processor. The sub-pixels are arranged such that either a first sub-pixel or a third sub-pixel is between a second sub-pixel and a fourth sub-pixel arranged in one direction. The signal processor outputs output signals to assign, to a set of the sub-pixels included in the display unit, color components assigned to two pieces of pixel data arranged in the one direction in input signals. The set of the sub-pixels is made up of the first, second, third, and fourth sub-pixels. The signal processor assigns a first color component that is a part or the whole of a white component in one of the two pieces of the pixel data to the fourth sub-pixel and second color components other than the first color component in the two pieces of the pixel data to the first to third sub-pixels.
US10714036B2

According to one embodiment, an electronic device includes a display panel having a plurality of pixels arranged in a matrix. Gray levels of the pixels are determined according to a gray level of a first frame, a gray level of a second frame and positions of the pixels in the matrix.
US10714031B2

A display device comprising: a display portion that is provided on a thin-film transistor (TFT) substrate and that comprises pixel capacitors and pixel transistors included in a plurality of pixels arranged in a matrix in a first direction and a second direction intersecting the first direction, a plurality of scan lines each coupled to some of the pixels arranged in the first direction, and a plurality of video signal lines each coupled to some of the pixels arranged in the second direction; and a driver that is provided on the TFT substrate and that is configured to supply video signals to the video signal lines and to control the pixel transistors to be on and off through the scan lines.
US10714021B2

A voltage value setting device including a test control unit which provides a temporary black grayscale voltage value and a temporary transistor off voltage value to a display device, and a luminance measurement unit which measures a luminance of a black grayscale that the display device displays based on the temporary black grayscale voltage value and the temporary transistor off voltage value. When the measured luminance of the black grayscale is lower than a black luminance threshold, the test control unit provides the display device with a black grayscale voltage value, set by adding a first margin value to the temporary black grayscale voltage value, and a transistor off voltage value, set by adding a second margin value to the temporary transistor off voltage value.
US10714015B2

In an organic light emitting diode (OLED) display device, a source driver chip is connected with the data lines through a plurality of first connection lines, and a gate driver chip connected with the scan lines through a plurality of second connection lines. The source driver chip and the gate driver chip are arranged on a same side of the OLED display device, and the first connection lines and the second connection lines are led from a side of the source driver chip.
US10714009B2

A display may have an array of pixels each of which has a light-emitting diode such as an organic light-emitting diode. A drive transistor and an emission transistor may be coupled in series with the light-emitting diode of each pixel between a positive power supply and a ground power supply. The pixels may include first and second switching transistors. A data storage capacitor may be coupled between a gate and source of the drive transistor in each pixel. Signal lines may be provided in columns of pixels to route signals such as data signals, sensed drive currents from the drive transistors, and predetermined voltages between display driver circuitry and the pixels. The switching transistors, emission transistors, and drive transistors may include semiconducting-oxide transistors and silicon transistors and may be n-channel transistors or p-channel transistors.
US10714007B2

Provided is a pixel circuit, including: a data writing unit, a driving unit, a reset unit, a light emission control unit, a storage unit and a light-emitting unit, wherein the data writing unit is configured to write a data signal input by a data signal line into a first mode; the reset unit is configured to reset the data signal and write the data signal into an output terminal of the driving unit; the storage unit is configured to store information on the data signal and transfer it to the driving unit; and the light emission control unit is configured to write a second power supply voltage at a second power supply voltage terminal into the reset unit and provide a light emission current to the light-emitting unit.
US10714004B2

A semiconductor device includes first to fourth terminals, a switch circuit, and an integrating circuit. The integrating circuit includes an amplifier circuit having a (−) terminal, a first (+) terminal, and a second (+) terminal. The integrating circuit is configured to integrate an input signal of the (−) terminal using an average voltage of a voltage of the first (+) terminal and a voltage of the second (+) terminal as a reference voltage. The switch circuit is configured to electrically connect the (−) terminal to the second terminal, the first (+) terminal to the first terminal, the second (+) terminal to the third terminal the (−) terminal to the third terminal, the first (+) terminal to the second terminal, and the second (+) terminal to the fourth terminal. The present semiconductor device is used as a semiconductor device sensing a current flowing through a pixel in a display panel.
US10714001B2

An exemplary active-matrix display comprises pixels disposed in a pixel array and pixel micro-controllers disposed in a controller array on a display substrate. Each of the pixels comprises micro-light-emitting elements that emit different color light. Each of the pixel micro-controllers is electrically connected to control the micro-light-emitting elements in each of two or more adjacent pixels in the pixel array. A spatial separation between pixels is greater than a spatial separation between the micro-light-emitting elements and is greater than a size of each of the micro-light-emitting elements. The micro-light-emitting elements in each of the pixels are disposed in a common pixel direction orthogonal to a pixel micro-controller center line an element distance substantially equal to or greater than one quarter of the extent of the pixel micro-controller in the common pixel direction from the center line. The pixel direction for each pixel controlled by a common pixel micro-controller is different.
US10714000B2

A display device, a method for controlling the display device, and a wearable device are provided. The display device includes an organic light-emitting structural layer; at least one control assembly including a color filter layer and a control electrode layer; and a control circuit. The color filter layer is closer to the organic light-emitting structural layer than the control electrode layer, the color filter layer includes color filter regions and light-transmissible regions arranged alternately, the control electrode layer includes first electrodes, each first electrode is on one color filter region corresponding to the first electrode and light transmittance of the first electrode is changeable under voltages. The control circuit is connected to the first electrodes and applies the voltages to the first electrodes so as to control the light transmittance of the first electrodes.
US10713996B2

A display panel is provided. In the display panel, a plurality of pixels respectively including a plurality of sub pixels are arranged in a matrix form on a glass. Each of the plurality of sub pixels includes a driving circuit disposed on the glass and configured to receive a PAM data voltage and a PWM data voltage, and an inorganic light emitting device configured to emit a light based on a driving current provided from the driving circuit. The PAM data voltage is applied at once to the plurality of pixels included in the display panel. The driving circuit compensates a deviation between driving circuits included in each of the plurality of sub pixels based on a driving voltage of the driving circuit, and controls a pulse width of a driving current having an amplitude corresponding to the applied PAM data voltage based on the applied PWM data voltage.
US10713991B2

A display device includes a display panel, a voltage generator configured to generate a gate driving voltage, a timing controller configured to generate a clock control signal, a gate controller configured to generate gate clock signals, a gate driver configured to generate a gate signal, an over current protection circuit configured to generate a gate clock current corresponding to the gate clock signals and output a shutdown control signal, and an abnormal signal detector configured to determine whether the clock control signal is abnormal based on a difference of a set reference signal and the clock control signal, and output a delay control signal that delays an output timing of the shutdown control signal from the over current protection circuit for a set time when the clock control signal is abnormal.
US10713986B2

A system reads a desired circuit parameter from a pixel circuit that includes a light emitting device, a drive device to provide a programmable drive current to the light emitting device, a programming input, and a storage device to store a programming signal. One embodiment of the extraction system turns off the drive device and supplies a predetermined voltage from an external source to the light emitting device, discharges the light emitting device until the light emitting device turns off, and then reads the voltage on the light emitting device while that device is turned off. The voltages on the light emitting devices in a plurality of pixel circuits may be read via the same external line, at different times.
US10713985B2

A method of inspecting light emitting elements includes disposing a first electrode and a second electrode on a substrate. A solution including a plurality of light emitting elements is applied on the first electrode and the second electrode. A first voltage is applied across the first electrode and the second electrode so as to cause the plurality of light emitting elements to emit light. The light emitted from the plurality of light emitting elements is photographed and first image data is generated therefrom. A density of the plurality of light emitting elements is determined using the first image data.
US10713978B2

A computing device includes memory configured for storing executable instructions, a processor configured for executing the instructions, a foldable display layer configured for displaying information in response to the execution of the instructions, and a bend limit layer coupled to the foldable display layer and arranged substantially parallel to a display surface of the foldable display layer. The bend limit layer is configured to increase its stiffness non-linearly when a radius of a bend of the bend limit layer is less than a threshold radius of curvature of the foldable display layer, the threshold radius of curvature being greater than 1 mm and less than 20 mm.
US10713976B2

A multiple wrap label has a first wrap portion extending from a first end and having a first width, and a second wrap portion extending from the first wrap portion to a second end, the second wrap portion having a second width greater than the first width, the second wrap portion extending over and enclosing the first wrap portion when the label is applied to a container.
US10713970B2

The “Reality Driver Education System” (RDES) combines different friction surfaces of an outdoor driving training area which extends a minimal length of 600 feet, and further comprises waterjet hazards and computer-generated, “augmented reality” images. RDES may be performed with the actual personal vehicle owned by driver or used in his/her employment. Several field devices and sensors integral to the training area send signals to a portable computer, which generate a variety of augmented and real driving hazards, including “water curtains,” to a head-mounted display worn by the driver. The driver/trainee drives the vehicle through various stages and simulations, thus exposing him/her to challenging emergency situations. Failing to perform proper maneuvers will likely result in losing control of the vehicle and probable spin-outs or sliding. Applying adequate steering, braking, and/or acceleration corrections will result in successful execution of each scenario.
US10713969B2

An apparatus for simulating a vehicle traveling on a road and towing a trailer, wherein the apparatus includes a scale model towing vehicle and trailer combination positioned on a moving belt of a treadmill. The apparatus has a speed control and a remote control steering mechanism to demonstrate how the vehicle/trailer towing combination will react to vehicle operator inputs under varying conditions, including variations in weight distribution of the trailer load.
US10713968B2

A shifter simulator for driver training includes a shaft with a handle affixed to a first end of the shaft and a distal second end of the shaft being interfaced to a shifter mechanism. A first force sensing device is interfaced to the shaft, outputting a value representative of an amount of force applied to the handle in a forward/rearward direction and a second force sensing device is interfaced to the shaft outputting a value representative of an amount of force applied to the handle in a lateral direction.
US10713964B1

In certain implementations, creation of an educational test may be facilitated based on prior performance with individual test questions. A user input indicating a subject matter for a test, one or more question categories related to the subject matter, and a questionee group for which the test is intended may be received. A plurality of questions may be obtained based on the user input. For each question of the plurality of questions, a question performance metric value associated with the question (that is calculated based on prior performance of one or more questionees with the question) may be obtained. A test performance metric value associated with the test may be calculated based on the question performance metric values associated with at least some questions of the plurality of questions. The at least some questions and the test performance metric value may be provided for presentation on a user interface.
US10713963B2

A method of managing lifelong learner events on a blockchain includes detecting an event related to a learner using a blockchain-enabled digital learning system, determining a concern/risk level of the learner by performing a risk assessment, determining parameters to generate a transaction related the learner's event based on the parameters and the concern/risk level, determining the values of the parameters by measuring the value or importance of the event and its associated metadata and documents, generating a list of transactions corresponding to the parameters, and validating the transactions using validating distributed peer-to-peer devices that run one or more chaincodes related to the management of the lifelong learner events.
US10713953B2

A vehicular exterior rearview mirror assembly includes a mirror reflector sub-assembly having a mirror reflective element, a mirror back plate, a heater pad, and a blind zone indication module that includes a plastic housing having a front end configured for attaching the blind zone indication module at the rear side of the mirror reflective element. When at least one light emitting diode of the blind zone indication module is electrically powered, light emitted by the light emitting diode exits the blind zone indication module via a light-transmitting portion of the front end of the plastic housing of the blind zone indication module. With the blind zone indication module disposed at the mirror reflective element, and with the light-transmitting portion of the front end of the plastic housing juxtaposed with a light-transmitting aperture of the mirror back plate, light emitted by the light emitting diode passes through the mirror reflective element.
US10713946B2

A computer-implemented parking system for managing a plurality of vehicle parking spaces disbursed over a plurality of physically separate parking locations, the system comprising at least one central server including one or more databases for storing information associated with a vehicle and user of the vehicle, at least one first computer capable of communicating with the central server, at least one second computer capable of communicating with the central server and the first computer, a payment system that enables an electronic payment to be sent directly from the first computer to the central server, a reservation system, the reservation system enabling a user to reserve one of the plurality of physically separate parking locations on the first computer and the reservation system enabling the user to reserve one of the plurality of physically separate parking locations at a pre-determined time on the first computer, a vehicle retrieval system, the vehicle retrieval system estimating a vehicle retrieval time based upon a number of vehicles to be parked, a number of arrival requests and a number of retrieval requests, the vehicle retrieval system enabling the user to request the vehicle to be retrieved at a pre-determined time on the first computer and the vehicle retrieval system transmitting estimated vehicle retrieval time to the first computer and the second computer, wherein the first computer retrieves user information and vehicle information from the central server and the first computer transmits the user information and vehicle information to the second computer to reserve at least one of the plurality of vehicle parking locations for the vehicle and the second computer alerts the parking system that the vehicle has arrived, wherein the second computer communicates with the central server to send user information, vehicle information and vehicle location information to the central server and wherein the first computer transmits user information, vehicle information and vehicle retrieval information from the central server to the second computer to retrieve the vehicle from the parking location.
US10713942B2

There is provided a display control device having first and second processing unit. When a traveling state of a vehicle indicated by a vehicle signal, which is acquired at a point of time at which an additional information generated by the second processing unit can be output, is not a predetermined state, at least one of an output of an additional image by the second processing unit and a superimposition of the additional image is prohibited.
US10713931B2

A portable alarm system has a base unit including a processor electrically connected to a wireless transceiver configured to communicate wireless signals to an external location. The base unit is further configured to receive wireless alarm signals from at least a first sensor and a second sensor, both of the first and second sensors being physically separated from the base unit. The processor is configured to be selectively programmed by a user to cause the base unit to communicate with a remote monitoring station in response to receiving an alarm signal from the first sensor, but not in response to receiving an alarm signal from the second sensor. Instead, when an alarm signal is received from the second sensor, the processor causes a different action, other than communicating with the monitoring station, to occur. Such action can include, for example, sending a wireless communication to a mobile electronic device.
US10713930B2

In order to detect a behavioral state of an evacuee in a facility and provide, for an evacuee, an evacuation instruction according to the behavioral state, the present invention provides an evacuation guidance system including: a storage means; an analysis control means for acquiring pressure data generated by at least one pressure sensor installed on an evacuation route in a facility and storing the pressure data in the storage means, and also for comparing a plurality of pieces of the pressure data generated in a verification time period, analyzing a temporal change in the pressure data, and analyzing a state of a person located on the pressure sensor; and an evacuation instruction means for generating evacuation instruction information based on an analysis result of the analysis control means.
US10713928B1

Arming security systems based on communications among a network of security systems in accordance with various embodiments of the present disclosure are provided. In one embodiment, a method for a client device associated with a first security system of a security network is provided, the security network including the first security system installed at a first address and a second security system installed at a second address, the client device including a processor, a communication module, and a display, the method comprising: in response to a security event detected by the second security system at the second address, receiving a user alert; in response to receiving the user alert, displaying the user alert; receiving an input including an arming action for the first security system; and in response to receiving the input, transmitting the arming action to the first security system.
US10713927B2

A workspace assembly includes a plurality of sound sensors including at least first and second sound sensors located in first and second spaces within a facility, respectively, at least one communication device located within one of the first space and the second space, and a processor in communication with the sound sensors and the communication device, the processor adapted to compare at least some characteristic of the sounds in at least a subset of the plurality of spaces to identify a particular space from which the sound emanates and to compare at least some characteristic of the sound emanating from the particular space to at least one threshold characteristic value and to provide a signal via the at least one communication device based on the results of the comparison.
US10713925B2

Among other things, systems to encourage compliance with hand washing procedures can include: an infrared emitter that projects a first infrared beam with a transverse cross-section having a first axis and a second axis that is shorter than the first axis, the transverse cross-section having a maximum length along the first axis, the infrared emitter modulating the first infrared beam to transmit a first identification signal; wherein the infrared emitter projecting the first infrared beam is placed such that the first axis of the transverse cross-section of the first infrared beam is substantially parallel to a boundary.
US10713922B1

A monitoring and control system receives input indicating occupancy state of a user with regard to a designated area, or a plurality of areas therein or portions thereof. The system further receives, from one or more of a plurality of sensing capable devices of, or in communication with, the monitoring and control system, input indicating a respective event involving the user entering or exiting the designated area, or an area therein or portion thereof, the sensing capable devices situated on or near the user, within the designated area, or in one or more of the plurality of areas therein, or portions thereof. The system transmits a message to the user responsive to the respective event involving the user entering or exiting the designated area and the occupancy state of the user with regard to the designated area.
US10713917B1

An vehicle with abandoned occupant alert system incorporates a pad having a global positioning tracking device, a radio-frequency identification (RFID) chip, a wireless transmitter, and a temperature gauge. The pad also comprises a heating and cooling mechanism which is activated in response to the interior temperature of the vehicle. The pad is configured to transmit a signal to an electronic device equipped with an application which alerts a user to the presence of an individual of sufficient weight sitting upon the pad in an unoccupied vehicle the engine of which has been shut off.
US10713913B2

The present invention relates to a method for managing copies of media samples recorded by a given network camera of a system comprising a plurality of interconnected network cameras, the method comprising the following steps: obtaining a topology of the system as a set of relationships existing between the network cameras of the plurality, based on media samples recorded by these network cameras; selecting a subset of network cameras from the plurality, based on the determined topology and a predetermined level of redundancy to achieve, for the storage of the copies of the media samples recorded by the given network camera, in storage units of network cameras of the subset.
US10713893B2

Systems and methods are provided for associating wagering accounts with each of a stored value account and a loyalty account. The stored value account can be associated with a prepaid card and can be useable over an open system bankcard network. The prepaid card can allow funds in the stored value account to be used at any location capable of accepting payment through the open system bankcard network such as gas stations, grocery stations, outlets, and restaurants. A player transfer funds, back and forth between the stored value account and the wagering account.
US10713885B2

An upright gaming machine includes a game determination component that facilitates a wager-based game result, input/output devices coupled to the game determination component, a gaming machine cabinet housing various gaming machine components, and lower and cash access doors located about the gaming machine cabinet. The lower door can be fully removable from the gaming machine, can facilitate access to an internal belly region, and can include a tethered locking arrangement having rotary latches, stationary pins, and a tether. The cash door includes a virtual pivot hinge opening arrangement that moves the cash door in a swivel motion from a closed position to an open position, where the swivel motion of the cash door is about a virtual axis having a center of rotation for which no physical component passes therethrough.
US10713884B2

Methods, systems and apparatuses of and for playing electronic or electro-mechanical wager gaming devices, including a player interface, of and for playing a poker and “video poker” type game based at least in part upon card-deck games such as but not limited to poker. The methods, systems and apparatuses include a plurality of configurations with multiple rule sets to facilitate the inducement and build game player excitement.
US10713879B2

A cooking device equipped in a food vending machine for cooking ingredients provided by the food vending machine has a chamber, a heating component, and a moving mechanism. The chamber extends in a straight line. The heating component and the moving mechanism are mounted in the chamber. The moving mechanism is used for moving the ingredients from the entrance to the exit. Thus, the cooking device can heat the raw ingredients until fully cooked, so the food vending machine can provide fresh and cooked-on-the-spot food. Furthermore, space in the chamber is utilized efficiently and the chamber suits for various ingredients and cooking methods. Besides, the moving mechanism is capable of moving multiple containers which contain ingredients, so the cooking device can heat multiple sets of ingredients at the same time.
US10713878B2

The present application provides an intake mechanism for a product into a merchandiser. The intake mechanism may include an input tray, a reciprocating assembly to maneuver the input tray, an identification module, and an input control system. The input control system permits access to the merchandiser as the input tray is maneuvered by the reciprocating assembly if the product is identified by the identification module.
US10713877B2

A device to produce personalized mixtures of substances is configured to be controlled by computer program code running on a user terminal. The computer program code enables a user of the user terminal to create and personalize the formulas for optimizing the beverage according to the specific needs of the user and order the beverages from a remote location.
US10713871B2

A system of isolation management comprises a computer for generating an isolation plan; a lockbox configured to receive the isolation plan from the computer; a mobile device associated with an individual, and one or more locks for isolation locking of an asset by each individual according to the isolation plan. The mobile device is allocated to the lockbox according to the isolation plan. The lockbox is configured to recognise the mobile device when proximal to the lockbox. The one or more isolation locks are removably housed in the lockbox. The one or more isolation locks are each able to be recognised by the mobile device and the mobile device is configured to record an association of one or more of the isolation locks to the mobile device according to the isolation plan. There is also an isolation point for isolating the asset with the one or more isolation locks according to the isolation plan. The isolation point is able to be recognised by the mobile device.
US10713868B2

In various embodiments, an electronic lock includes a locking mechanism to selectively transition between locked and unlocked states. A controller and capacitive touch sensor to detect and distinguish between short touch inputs having a touch duration less than a time threshold and long touch inputs having a touch duration greater than a time threshold. If the detected series or pattern of short and long touch interactions matches a stored series of touch interactions defining an unlock code, the locking mechanism transitions from the locked state to the unlocked state.
US10713862B2

A fuel analysis system is described configured to assist vehicle drivers/users in preventing damage to their vehicles caused by bad fuel. Bad fuel can leave a driver and passengers stranded on the road in need of emergency road side service, and in many instances, results in permanent damage to the vehicle. The disclosed fuel analysis system describes an enhanced bad fuel sensor system that measures a delta in vehicle operation data to identify and in many instances, pre-emptively alert, a user of a vehicle of bad fuel. The fuel analysis system may use crowdsourcing through aggregation of refueling event profile records from a plurality of vehicles' telematics devices to increase the accuracy with which bad fuel is detected.
US10713855B2

The invention relates to a computerised method for creating and editing, using a computer, surfaces used to represent garments on the body of a mannequin (22) in a virtual three-dimensional environment. The method consists in using digital sculpting techniques and tools in conjunction with physical cloth simulation in order to modify freely and quickly the shape of a garment on the body of a mannequin (22).
US10713854B2

A method for creating a house visualization template can comprise receiving a first exterior image of a first house. The method can also include creating a set of first boundaries that define a first type of decorative feature of the first house. Additionally, the method can include receiving a first set of decorative images that depict various different instances of the first type of decorative feature. The method can also comprise generating from each of the decorative images of the first set of decorative images respective first decorative feature masks. The first decorative feature masks may be configured to selectively overlay an area encompassed by the set of first boundaries, such that the first exterior image of the first house is selectively displayable with any of the instances of the first type of decorative features within the first set of decorative images.
US10713847B2

The present group of inventions relates to methods and systems intended for interacting with virtual objects, involving determining a control unit to be used for interacting with virtual objects, determining characteristic graphics primitives of a virtual object, determining the spatial position of the control unit, correlating the spatial position of the control unit to the graphics primitives of the virtual object, and performing the desired actions with regard to the virtual object. In accordance with the invention, images are used from a user's client device which has a video camera and a display, a control unit image library is created on the basis of the received images, and the obtained image library is used for determining the graphics primitives of the control unit. Then, the spatial position of the control unit is determined by calculating the motion in space of the control unit graphics primitives.
US10713843B2

Embodiments of the disclosure include methods, machines, and non-transitory computer-readable medium having one or more computer programs stored therein to enhance core analysis planning for a plurality of core samples of subsurface material. Embodiments can include positioning electronic depictions of structure of encased core samples of subsurface material on a display and determining portions of each of the images as different planned sample types thereby to virtually mark each of the images. Planned sample types can include, for example, full diameter samples, special core analysis samples, conventional core analysis samples, and mechanical property samples. Embodiments further can include transforming physical properties of encased core samples of subsurface material into images responsive to one or more penetrative scans by use of one or more computerized tomography (CT) scanners.
US10713842B2

A process for receiving, from a computing device, a series of captured building images by overlaying, on a capture device display, a selected graphical guide from a set of sequentially related graphical guides. The process continues by capturing, by a capture device, a building image, wherein the capturing is performed during substantial alignment of an image of a selected building object with a corresponding orientation of the selected graphical guide. The process continues by receiving acknowledgement of the building image being captured for the selected graphical guide and the selected building object. The process is repeated for a plurality of building images.
US10713839B1

A method and system for generating a three-dimensional representation of a vehicle to assess damage to the vehicle. A mobile device may capture multispectral scans of a vehicle from each a plurality of cameras configured to scan the vehicle at a different wavelength of the electromagnetic spectrum. A virtual model of the vehicle may be generated from the multispectral scan of the vehicle, such that anomalous conditions or errors in individual wavelength data are omitted from model generation. A representation of the virtual model may be presented to the user via the display of the mobile device. The virtual model of the vehicle may further be analyzed to assess damage to the vehicle.
US10713835B2

A method for of playing an animation image, the method including: obtaining a plurality of images; displaying a first image of the plurality of images; detecting a first event as a trigger to play the animation image for a first object of the first image; and playing the animation image for the first object using the plurality of images.
US10713826B2

A computer-implemented method of drawing a polyline in a three-dimensional scene: a) draws a segment (S1) of said polyline in said three-dimensional scene, said segment having a starting point (P1) and an endpoint (P2); b) displays, in the three-dimensional scene, a graphical tool (PST) representing a set of three orthogonal planes (PLA, PLB, PLC), one of said planes being orthogonal to the segment; c) selects one of said planes; and d) draws another segment of the polyline (S2), having a starting point coinciding with the endpoint of the segment drawn in step a) and lying in the plane (PLA) selected in step c). Steps a), c) and d) are carried out based on input commands provided by a user. A computer program product, non-volatile computer-readable data-storage medium and Computer Aided Design or three-dimensional illustration authoring system carries out such a method.
US10713816B2

Disclosed in some examples, are methods, systems, and machine readable mediums that correct image color casts by utilizing a fully convolutional network (FCN), where the patches in an input image may differ in influence over the color constancy estimation. This influence is formulated as a confidence weight that reflects the value of a patch for inferring the illumination color. The confidence weights are integrated into a novel pooling layer where they are applied to local patch estimates in determining a global color constancy result.
US10713815B1

A method for supporting at least one administrator to evaluate detecting processes of object detectors to provide logical grounds of an autonomous driving is provided. And the method includes steps of: (a) a computing device instructing convolutional layers, included in an object detecting CNN which has been trained before, to generate reference convolutional feature maps by applying convolutional operations to reference images inputted thereto, and instructing ROI pooling layers included therein to generate reference ROI-Pooled feature maps by pooling at least part of values corresponding to ROIs on the reference convolutional feature maps; and (b) the computing device instructing a representative selection unit to classify the reference ROI-Pooled feature maps by referring to information on classes of objects included in their corresponding ROIs on the reference images, and to generate at least one representative feature map per each class.
US10713813B2

A computer-implemented method for determining a gaze position of a user, comprising: receiving an initial image of at least one eye of the user; extracting at least one color component of the initial image to obtain a corresponding at least one component image; for each component image, determining a respective internal representation; determining an estimated gaze position in the initial image by applying a respective primary stream to obtain a respective internal representation for each of the at least one component image; and outputting the estimated gaze position. The processing of the component images is performed using a neural network configured to, at run time and after the neural network has been trained, process the component images using one or more neural network layers to generate the estimated gaze position. A system for determining a gaze position of a user is also provided.
US10713812B2

A method of determining a facial pose angle of a human face within an image is provided. After capturing a first image of the human face, respective coordinates of a predefined set of facial feature points of the human face in the first image are obtained. The predefined set of facial feature points includes an odd number of facial feature points, e.g., at least a first pair of symmetrical facial feature points, a second pair of symmetrical facial feature points, and a first single facial feature point. The predefined set of facial feature points are not coplanar. Next, one or more predefined key values based on the respective coordinates of the predefined set of facial feature points of the human face in the first image are calculated. Finally, a pre-established correspondence table is queried using the one or more predefined key values to determine the facial pose angle of the human face in the first image.
US10713803B1

Images of a fixture may be acquired by cameras positioned with a field-of-view of the fixture. Such images are processed to identify estimated tops of items at the fixture. Using the estimated tops and item data for items designated for stowage at the fixture, one or more estimated locations of items (such as bounding boxes representative of the items) may be determined. Each estimated location for an item is tested for validity. For example, each estimated location is checked to see if the estimated location is within a working volume of the fixture. If the estimated location of the item is within the working volume, the item is determined to be valid. Otherwise, the item is deemed invalid.
US10713801B2

A method of the present disclosure includes performing, by a processing device, a first image registration between a reference image of a patient and a motion image of the patient to perform alignment between the reference image and the motion image, wherein the reference image and the motion image include a target position of the patient. The method further includes performing, by the processing device, a second image registration between the reference image and a motion x-ray image of the patient, via a first digitally reconstructed radiograph (DRR) for the reference image of the patient. The method further includes tracking at least a translational change in the target position based on the first registration and the second registration.