Abstract:
A method and apparatus for generating light includes a chamber having a high voltage region, a low voltage region, and a plasma generation region that defines a plasma confinement region. A magnetic core is positioned around the chamber and is configured to generate a plasma in the plasma confinement region. A switched power supply includes a DC power supply and a switched resonant charging circuit that together generate a plurality of voltage pulses at the output causing a plurality of current pulses to be applied to the power delivery section around the magnetic core so that at least one plasma loop is established around the magnetic core that confines plasma in the plasma confinement region, thereby forming a magnetically confined Z-pinch plasma. Light generated by the Z-pinch plasma propagates out of a port in the light source.
Abstract:
A deposition apparatus includes a plasma generator for generating a plasma by arc discharge, and a deposition unit for forming a film on a member by the plasma generated by the plasma generator. The plasma generator includes a target holder for holding a target and applying a negative potential to the target, an anode to which a positive potential is applied, and a capture for capturing droplets from the target. The anode has an opening, and the capture is arranged in the opening.
Abstract:
Systems and methods to reduce the amplitude of undesirable eddy currents in conducting structures, e.g., induced by the translation of an FRC into a confinement chamber, while leaving beneficial eddy currents unaffected. This is achieved by inducing opposing currents in the same conducting structures prior to plasma translation into the confinement chamber.
Abstract:
Systems and methods to reduce the amplitude of undesirable eddy currents in conducting structures, e.g., induced by the translation of an FRC into a confinement chamber, while leaving beneficial eddy currents unaffected. This is achieved by inducing opposing currents in the same conducting structures prior to plasma translation into the confinement chamber.
Abstract:
A high performance field reversed configuration (FRC) system includes a central confinement vessel, two diametrically opposed reversed-field-theta-pinch formation sections coupled to the vessel, and two divertor chambers coupled to the formation sections. A magnetic system includes quasi-dc coils axially positioned along the FRC system components, quasi-dc mirror coils between the confinement chamber and the formation sections, and mirror plugs between the formation sections and the divertors. The formation sections include modular pulsed power formation systems enabling static and dynamic formation and acceleration of the FRCs. The FRC system further includes neutral atom beam injectors, pellet injectors, gettering systems, axial plasma guns and flux surface biasing electrodes. The beam injectors are preferably angled toward the midplane of the chamber. In operation, FRC plasma parameters including plasma thermal energy, total particle numbers, radius and trapped magnetic flux, are sustainable at or about a constant value without decay during neutral beam injection.
Abstract:
The invention relates to a linear plasma system. The linear plasma system includes a number of troughs of an electrode alternating with a number of peaks of the electrode forming a sawtooth shape, a reactive gas feed, a precursor gas feed, and a power source. The reactive gas feed is disposed on the electrode and configured to continuously release a reactive gas into an array of holes located at the trough apex. The precursor gas feed is disposed on the electrode and configured to continuously release a precursor gas into an array of holes located at the peak apex. The power source is configured to apply radio frequency power to the electrode to simultaneously interact with the reactive gas mixed with the precursor gas to generate plasma, which is used to create a product that is deposited on a substrate.
Abstract:
A fusion reactor (10) includes a sphere (12). Structure (20) is disposed within the interior of the sphere (12) for producing a magnetic field. Structure (24, 26) is circumferentially disposed around the exterior of the sphere (12) for producing a countermagnetic field. Structure (28, 32, 38, 46a) is provided for injecting a gas containing fusible ions into the sphere (12). Structure (30, 32, 38, 46) is also provided for heating the gas within the interior of the sphere (12). Structure (62, 64, 66, 68) is provided for extracting heat from the sphere (12).
Abstract:
An Atomic Fusion Device wherein a laser beam is focused to the center of a spherical reaction chamber having a mirrored inner surface. The spherical reaction chamber is evacuated and surrounded by a concentric lithium jacket which is surrounded by a concentric cryogenic jacket in which is immersed a multiaxis Ioffe bar system. A mixture of deuterium and tritium plasma is continuously introduced into the reaction chamber at a metered rate through the preheat units and compressed at the center of the chamber by the electromagnetic field created by the superconductive Ioffe bar system. This mixture is ignited by the laser beam to create a steady-state, self-sustaining lithium blanket. Power is controlled by controlling the plasma input rate and energy is coupled out of the device by electromagnetic coupling or by recirculating the lithium through a heat exchanger.
Abstract:
A heat treating apparatus including a crucible to contain molten metal, at least one plasma ejecting nozzle which is constructed so as to generate a plasma jet and is secured with respect to the crucible around the central axis of it and a magnetic field generating means to generate a magnetic field interacting with the plasma jet and deflecting it.
Abstract:
A process and apparatus for transferring energy to an electrically conductive medium. The conductive medium is disposed in an inner chamber which is surrounded by an annular chamber having walls internally covered with a layer adapted to have superconductive properties. According to the present disclosure the layer is brought to a state of superconductivity producing a current density in the superconducting layer, said trapped current across the superconducting layers producing a magnetic field in the annular chamber which corresponds to a given energy and transferring this energy into the electrically conductive medium in the inner chamber by causing the transition of said layers from the superconductive state to the normal state.