Abstract:
Onboard EC window controllers are described. The controllers are configured in close proximity to the EC window, for example, within the IGU. The controller may be part of a window assembly, which includes an IGU having one or more EC panes, and thus does not have to be matched with the EC window, and installed, in the field. The window controllers described herein have a number of advantages because they are matched to the IGU containing one or more EC devices and their proximity to the EC panes of the window overcomes a number of problems associated with conventional controller configurations.
Abstract:
Onboard EC window controllers are described. The controllers are configured in close proximity to the EC window, for example, within the IGU. The controller may be part of a window assembly, which includes an IGU having one or more EC panes, and thus does not have to be matched with the EC window, and installed, in the field. The window controllers described herein have a number of advantages because they are matched to the IGU containing one or more EC devices and their proximity to the EC panes of the window overcomes a number of problems associated with conventional controller configurations.
Abstract:
Onboard EC window controllers are described. The controllers are configured in close proximity to the EC window, for example, within the IGU. The controller may be part of a window assembly, which includes an IGU having one or more EC panes, and thus does not have to be matched with the EC window, and installed, in the field. The window controllers described herein have a number of advantages because they are matched to the IGU containing one or more EC devices and their proximity to the EC panes of the window overcomes a number of problems associated with conventional controller configurations. Also described are self-meshing networks for electrochromic windows.
Abstract:
Onboard EC window controllers are described. The controllers are configured in close proximity to the EC window, for example, within the IGU. The controller may be part of a window assembly, which includes an IGU having one or more EC panes, and thus does not have to be matched with the EC window, and installed, in the field. The window controllers described herein have a number of advantages because they are matched to the IGU containing one or more EC devices and their proximity to the EC panes of the window overcomes a number of problems associated with conventional controller configurations.
Abstract:
Onboard EC window controllers are described. The controllers are configured in close proximity to the EC window, for example, within the IGU. The controller may be part of a window assembly, which includes an IGU having one or more EC panes, and thus does not have to be matched with the EC window, and installed, in the field. The window controllers described herein have a number of advantages because they are matched to the IGU containing one or more EC devices and their proximity to the EC panes of the window overcomes a number of problems associated with conventional controller configurations.
Abstract:
A system and method are described for delivering to a member of an audience supplemental information related to presented media content. Media content is associated with media metadata that identifies active content elements in the media content and supported intents associated with those content elements. A member of an audience may submit input related to an active content element. The audience input is compared to media metadata to determine whether supplemental information can be identified that would be appropriate to deliver to the audience member based on that person's input. In some implementations, audience input includes audio data of an audience's spoken input regarding the media content.
Abstract:
A transparent electrochromic system includes a cellular structure, two power supply electrodes together supported on a single wall, and at least one additional electrode. The additional electrode can be used as a reference electrode or as a polarization electrode. The additional electrode can also form a condenser with a fourth electrode that is added to the system, in order to control a migration of certain electroactive substances responsible for coloring and decoloring the system. The operation of the system can thus be improved.
Abstract:
An exterior rearview mirror element including a front element having a first front surface and a second rear surface. A cross-section of the second rear surface defines a first line. A rear element includes a third front surface and a fourth rear surface. Electrochromic material is located between the front element and the rear element. A spotter optic is located in the second rear surface of the front element. A cross-section of the spotter optic defines a second line. A transition region is disposed between the spotter optic and the second rear surface of the front element. A distance from a surface of the transition region to an intersection of the first line and the second line is between about 0.001 mm and 0.034 mm. At least a portion of the spotter optic includes a first radius of curvature and at least a portion of the first front surface includes a second radius of curvature, the first radius of curvature being smaller than the second radius of curvature.
Abstract:
A transposed or vertical scan CRT that is compatible with multiple different input video signals so as to allow the same to operate according to different video signal transmission standards. A frame rate converter is positioned to receive incoming HDTV signals from any source. The incoming signals can be at any frame rate, for example, 24 Hz, 25 Hz, 50 Hz, 60 Hz, 72 Hz and 75 Hz. The addition of a frame rate converter provides a single vertical/horizontal display scan rate combination for all incoming signal rates.
Abstract:
A color setting apparatus and method for a system for reproducing multimedia data are provided. The apparatus includes a color setting controller for displaying a closed curve band divided into at least two equal-sized sections each containing a different color, and a setting band having at least two sections for indicating change of a set value of each of the colors on a screen, and for changing the set value of a selected color and displaying the changed color according to the changed set value on the screen. The color setting controller increases or decreases the size of the section for indicating change of the set value according to the set value.