Abstract:
An isolation system for isolating a first object from vibrations from a second object. Such vibrations will have three orthogonal components, one oriented along a line between the objects, and two oriented 90.degree. apart in a plane normal to that line. The system includes three superconductor/magnet stages, each stage designed to extinguish one of the orthogonal components.
Abstract:
A method and apparatus for damping vibrations in high Tc superconducting magnetic levitation bearings and the like is described. By controlling the temperature of the superconducting material at the "energy dissipation peak", which is a few degrees below the temperature of the transition to the superconducting state, a damping effect can be switched on or off as required.
Abstract:
A superconducting bearing assembly includes a coil field source that may be superconducting and a superconducting structure. The coil field source assembly and superconducting structure are positioned so as to enable relative rotary movement therebetween. The structure and coil field source are brought to a supercooled temperature before a power supply induces a current in the coil field source. A Meissner-like effect is thereby obtained and little or no penetration of the field lines is seen in the superconducting structure. Also, the field that can be obtained from the superconducting coil is 2-8 times higher than that of permanent magnets. Since the magnetic pressure is proportioned to the square of the field, magnetic pressures from 4 to 64 times higher are achieved.
Abstract:
A vehicle has a rotary magnetic field member which is rotatably supported at a position near the surface of a roadway along which the vehicle runs and rotatingly driven by a driving device. The rotary magnetic field member has magnetic poles of different polarities alternately arranged around its circumference. The vehicle also has an electrical power collector for receiving electrical power from an electrical power supply associated with the roadway. The received electrical power is supplied under the control of a controller to the driving device thereby rotatably driving the rotary magnetic field member. The rotary magnetic field member when rotated relative to the roadway made of an electrically conductive non-magnetic material, forms a varying magnetic field in cooperation with the roadway, thereby generating propulsion force for propelling the vehicle and force for suspending the vehicle, so that the vehicle is propelled in a floating state. It is therefore possible to reduce friction between wheels of the vehicle and the roadway and, hence, to suppress wear of the wheels. In a high-speed transportation system of the invention, the electrical power collector picks up electrical power from the electrical power supply and the rotary magnetic field member is rotatingly driven by the power picked up by the electrical power collector.
Abstract:
A cylindrical superconductor bearing is made of Type II ceramic superconductor, dispersed in an acrylic thermoplastic carrier in a ratio between 1:1 and 3:1 by volume. The cylindrical superconductor bearing is particularly useful as a magnetic journal bearing.
Abstract:
The operation of the ultra-high frequency (UHF) electromagnetic motor or thruster, is based on generating extremely short and powerful electrical, magnetic or electromagnetic field pulses and separating (unrooting) or disassociating said field pulses from the originating source, so that subsequently the emitting device and a device that is the objective or target, a support structure that supports both devices and another elements connected to said support structure are for an instant disassociated from the field, waiting for the pulsed field to reach the objective or target. At that moment, the element emits a field with a polarization that allows the exertion of a force that attracts or repels the field pulse, with respect to the objective or target and consequently with respect to the motor of which they form part as a unit, both the emitter and the target being joined by a support structure.
Abstract:
A system for pumping or mixing a fluid using a levitating, rotating magnetic element and various other components for use in a pumping or mixing system are disclosed. The magnetic element is placed in a vessel or container that can be positioned in close proximity to a superconducting element. The vessel or container may be sealed with the magnetic element and a product therein, with the fluid being introduced after sealing. Preferably, the vessel or container is capable of holding fluid volumes greater than 10 liters.
Abstract:
An impeller apparatus for use with a magnetically coupled mixer includes in one embodiment an axial-pumping impeller spaced axially apart from a driven magnet by a shaft. In another embodiment the impeller apparatus includes an up-pumping impeller spaced axially apart from a magnetic element by a shaft, the magnetic element cooperates with a superconducting element for levitating the impeller apparatus away from the bottom of the tank and cooperates with a motive device to rotate the impeller.
Abstract:
A ferromagnetic member (21) of a movable part (2) is disposed on a side of a stationary part (1) such that the ferromagnetic member (21) faces a high temperature superconductor (11) of the stationary part (1). The high temperature superconductor (11) is brought into a superconductive state by cooling it to a temperature below a critical temperature in a magnetic field. The magnetic flux pinned to the high temperature superconductor (11) is caused to pass through the ferromagnetic member (21) so that an attractive force is generated between the high temperature superconductor (11) and the ferromagnetic member (21) to hold the movable part (2). When the ferromagnetic member (21) has a shape such that when the gap becomes lower than a predetermined value, the attractive force decreases, the movable part (2) can be stably suspended in a non-contacting manner, without the necessity of control, by the combination of the high temperature superconductor (11) and the ferromagnetic member (21).
Abstract:
A method of designing a superconductivity employing apparatus includes the steps of causing a magnetism generating disk-shaped floatable portion (4) to face a disk-shaped fixed portion (2) capable of exhibiting superconductivity with a gap (G) therebetween; initializing the fixed portion (2) to reach a superconducting state at a position where the floatable portion (4) is spaced away from the fixed portion (2) to such an extent that its magnetic field does not influence the fixed portion (2); and using properly first, second, and n-th approach characteristics (S1, S2, Sn) when a difference between an n-th approach characteristic (Sn) and the second characteristic (S2) is smaller than a difference between the first and second characteristics (S1, S2), where the first approach characteristic (S1) is a characteristic of a magnetic floating force obtained by allowing the floatable portion (4) to approach the fixed portion (2), the second approach characteristic (S2) is a characteristic of a magnetic floating force obtained by allowing the floatable portion (4) to approach the fixed portion (2) after the floatable portion (4) is allowed to recede from the fixed portion (2) to such an extent that its magnetic field does not influence the fixed portion (2), and the n-th approach characteristic is a characteristic of a magnetic floating force obtained by repeatedly carrying out the operations subsequent to the operation of the second approach characteristic (S2).