Abstract:
A method for clusterized power sharing conversion and regulation of the primary source power within the power converting and regulating supplies includes performing simultaneously and indispensably a procedure of subdividing every switch-mode power conversion process into multiples of sub-processes, each performed with a less intensive power draw within a separate power conversion channel, a procedure of time-displacing these sub-processes and a procedure of overlaying the power shares drawn through the separate power conversion channels. When applied to the power supply systems these procedures are performed within the summing circuits between primary power sources and power converting apparatus and loads. The improved method offers a procedure of subdividing the multiple power conversion power-on cycles into a number of separate clusters each containing at least one or more power-on cycles, a procedure of time-displacing the clusterized power-on cycles with respect to each other within the same cluster, a procedure of summing the portions of power drawn through the same cluster, a procedure of time-displacing the clusters, a procedure of summing the shares of power drawn through all clusters, and a procedure of controlling the time-displacement intervals to provide optimal superimposition of power shares drawn through the system which results in improvement of ripple filtering, efficiency and rate-of-response to changes in load.
Abstract:
It is an object to enhance a breakdown voltage without requiring a complicated manufacturing process while maintaining a stable operation. A control signal (A) output from an MCU (11) is transmitted to a driving circuit (3a) for driving a power switching element (1a) of an upper arm through two-stage level shift circuits. The level shift circuit in a first stage is constituted by a series circuit of a switching element (13) and a resistive element (14), and the level shift circuit in a second stage is constituted by a series circuit of a switching element (16) and a resistive element (17).