Abstract:
A wire harness can ensure waterproofness of an exposed conductor portion, and even when at least one of insulated wires is exposed to a high temperature, can suppress loosening of a rubber stopper of a waterproofing terminal. An outer periphery of a region containing an exposed conductor portion and coating material end portions is continuously covered with a protective film. At each of the coating material end portions, a gap between a coating material and the protective film covering the coating material is sealed with a waterproofing agent. At least one insulated wire has a flow path through which gas flows, the flow path being created in gaps between strands that constitute a conductor of the insulated wire and reaching from a coating material end portion opposite to the coating material end portion adjacent to the exposed conductor portion to a splice portion.
Abstract:
Some embodiments include a flexible, pressure-balanced cable assembly. The cable assembly has a tubular-shaped flexible outer sleeve that surrounds an electrical cable. A plurality of seals is positioned along the length of the flexible sleeve within the space formed between the inner surface of the flexible sleeve and the outer surface of the electrical cable. The seals partition the space into a plurality of individual chambers. Each chamber is filled with dielectric fluid. The seals are independently and bi-directionally movable in response to a pressure difference between the inside of the cable assembly and the external environment thereby balancing the pressure between the inside of the cable assembly and the external environment.
Abstract:
An apparatus is provided for a connection point between a paper-insulated electrical high-voltage cable, which is impregnated with an insulating medium which can flow, and a plastic-insulated electrical high-voltage cable, in which an end termination, which is surrounded by a pressure-resistant partition isolator (12), is provided at the end of the paper-insulated high-voltage cable, and in which the connection point of the conductors of the two high-voltage cables is surrounded by electrical screening elements and a sleeve body (18). The sleeve body (18) is in the form of an elongated, integral component composed of elastic insulating material with an aperture hole for holding the two high-voltage cables (3, 4), and the sleeve body (18) is equipped at its two axial ends, which are intended to hold the high-voltage cables (3, 4), with electrical control funnels (21, 22) which, in the fitted position, rest on electrically conductive layers of the two high-voltage cables (3, 4). The internal diameters of the aperture hole in the sleeve body (18) at its two axial ends which are equipped with the control funnels (21, 22) are of different defined sizes, in order to hold the two high-voltage cables (3, 4), whose external diameters differ by at least 10 mm in the contact areas of the sleeve body (18), matched to these different external diameters.
Abstract:
A cooled current lead for conducting electrical current into a cooled vessel. The current lead comprises an electrical conductor (22) comprising a region (29) which, in use, is heated by electrical current flowing through it; a cooled component (31) situated above a the region (29) and which is provided with a path for removal of heat; and a thermo-siphon comprising a cavity (35) in thermal contact with both the region of the electrical conductor and the cooled component, said cavity containing a fluid (35).
Abstract:
A cable duct is provided for cables to be laid along walls or tops of subterranean tubes, ducts, etc. for the transport of water, energy, data, optical fiber cables, etc. The cable duct is installed in the tube from a surface through access shafts and fixed to the duct. The cable duct is formed by cable duct body elements, disposed one behind the other in a longitudinal direction, connected to one another at the ends thereof such as to be pivoted relative to one another at a lateral angle about a lateral pivot axis. Each of the body elements is formed by two cover plates and connected to one another by a web. Laterally open chambers are disposed on both sides of the web for housing the cables. The chambers are sealed by edge cover strips forming two closed longitudinal chambers with the connected angularly adjustable body elements.
Abstract:
A cable has a conductor extending therefrom and a partially exposed fluid-containing layer surrounding the conductor. A connector is joined to an end of the conductor, and an electrically insulative, elastomeric tube is covers all of the exposed fluid-containing layer and a portion of the connector. The elastomeric tube is substantially impermeable to the fluid in the cable. For cables having more than one conductor, an additional elastomeric boot is installed over the cable.
Abstract:
This design of the invention is for support electrical conduit and flexible tube,cable by One-hole strap or mini-strap at the Cable-tray, Junction-box,electrical panel or other electrical enclosures.
Abstract:
A joint arrangement for guiding a cable therethrough with a holding body (201) and a leg (204) which is rotatably journalled on the holding body (201) is disclosed. In the joint arrangement, a mechanism for limiting the rotation of the leg relative to the holding body is provided in order to protect a cable passed through the leg and holding body against excessive twisting. The leg (204) is journalled on the holding body (201) with a ball joint (205). Alternatively or additionally, the joint arrangement includes a swivel joint having a sleeve wherein means for limiting rotation are provided in the form of a stop pin and a stop formed on the sleeve or in a sleeve. Electric operator-controlled elements can be movably mounted on a surgical microscope with the joint arrangement.
Abstract:
In a process and device for making an electrically connection between two end sections of two cable ducts, each duct having one electrically conducting wire, embedded in a wall of the duct and enclosed on all sides it is suggested to fit a collar comprising separable elements around the end section of each cable duct, to connect the collars by an electrically conducting cable, to achieve electrical contact between the detector wire and the conducting cable and to clamp the separable elements together.
Abstract:
A transition joint for sealing an electrical coaxial cable having an oil-impregnated or fluid filled layer. The transition joint has two primary elements, an electrically insulative elastomeric tube and a heat recoverable sleeve. In connecting a paper-insulated, lead jacketed cable to an extruded dielectric cable, the elastomeric tube is placed in tight conformity around the paper layer, slightly overlapping the lead jacket and the central conductor, and further partially overlapping a connector joining the conductors of the cables. The heat recoverable sleeve is then contracted over the elastomeric tube, overlapping the lead jacket and the central conductor, and partially overlapping the connector. The heat recoverable sleeve mechanically restricts the elastomeric tube, preventing the elastomeric tube from swelling which, in turn, precludes absorption of the oil, which would otherwise cause the elastomer to degrade. A flexible tape may be substituted for the heat recoverable sleeve to provide the mechanical confining pressure. If the cable has an additional semiconducting layer, a high-dielectric tape may be used for dielectric stress control.