Abstract:
An image forming medium includes a substrate; an imaging layer including an imaging material coated on said substrate, wherein the imaging material exhibits a reversible transition between a colorless state and a colored state; and a protective layer over the imaging layer, the protection layer including dipolar molecules that can be reversibly switch between a UV light transmission state and a UV light absorption state, wherein the dipolar molecules in their random orientation absorb in substantially the same spectral region as the imaging material in its un-imaged state, and wherein the imaging layer is imageable by ultraviolet light when the dipolar molecules are in the UV light transmission state, but the imaging layer is substantially not imageable by ultraviolet light when the dipolar molecules are in the UV light absorption state.
Abstract:
An image erasing apparatus includes a stacking tray stacking the recording medium, a heater heating the recording medium to a temperature equal to or higher than the temperature at which developer on the recording medium is erased, a detector disposed downstream in a recording medium carrying direction from the heater to detect an image on the recording medium, a recording medium carrying mechanism picking up the recording medium, from the stacking tray sheet by sheet and carrying the picked-up recording medium, a storage box storing the image-erased recording medium by size, a lateral aligning mechanism disposed in the storage box so as to align the recording medium in the lateral direction, and a controller controlling the alignment operation of the lateral aligning mechanism.
Abstract:
Provided are methods of removing bisulfite material from a composition that contains a bisulfite material and an enzyme. The method includes contacting the composition with a compound containing at least one aldehyde functional group to form an aldehyde-bisulfite complex, whereby the aldehyde-bisulfite complex may be separated from the composition.
Abstract:
This invention relates to an imaging element comprising an imaging layer having associated therewith a compound of Structure I: wherein: the substituents are as defined in the application.
Abstract:
A projection system and method are provided, the system includes a radiation source for generating electromagnetic radiation outside the visible wavelength range, an imaging unit, which can be irradiated by the radiation source, and a projection screen having a radiation-sensitive surface which, when excited by means of the above-mentioned invisible radiation, can emit fluorescent light in the visible wavelength range. The radiation-sensitive surface is formed of a material which, irrespective of the position, emits fluorescent light of different wavelengths as a function of the wavelength of the excitation radiation, and the radiation source can emit excitation radiation of different wavelengths.
Abstract:
Apparatus and method for depositing water onto the surface of a substrate passed through the apparatus. The apparatus has a housing that defines an internal atmosphere confined in at least partial isolation from the ambient atmosphere. The housing has a moisture saturation portion, a deposition portion, and a passageway. The moisture saturation portion has a water supply and a vapor reservoir. The water supply contains a quantity of water. The vapor reservoir holds a volume of the interior atmosphere in thermal and phase equilibrium with the water in the water supply. The deposition portion has a plenum wall surrounding a central chamber. The plenum wall is substantially insulated from ambient temperature variations and has a pair of opposed substrate gaps. The gaps define a path for the substrate through the chamber. The passageway communicates with the vapor reservoir and the chamber. A primary heater is disposed to heat the water in the water supply. A secondary heater is disposed within the passageway between the vapor reservoir and the chamber. A fan drives the internal atmosphere from the vapor reservoir through the passageway to the chamber. A controller is operatively connected to the primary and secondary heaters. The controller senses wet and dry bulb temperatures of the internal atmosphere in the chamber. The controller actuates the primary heater at a range of wet bulb temperatures below a predetermined wet bulb limit temperature and actuates the secondary heater at a range of dry bulb temperatures below a predetermined dry bulb limit temperature. The dry bulb limit temperature is greater than the wet bulb limit temperature.
Abstract:
In electronic film development, a film is scanned, using light, multiple times during development. The light is reflected from an emulsion containing milky undeveloped silver halide embedded with developing grains. The undeveloped halide layer has a finite depth over which photons from a light source scatter backward. This depth is within the range of the coherency length of infrared sources commonly used in electronic film development, causing coherency speckle noise in the scanned image. A prescan made after the emulsion swells, but before the silver grains develop, normalizes subsequent scans, pixel by pixel, to cancel coherency speckle and other defects.
Abstract:
A final rinsing solution designed for the photographic processing of silver halide photographic products that comprises an anionic surfactant and a non-ionic surfactant the solution had a static surface tension less than or equal to 32 mN/m and a dynamic surface tension less than 50 mN/m. The solution is used in a method for processing silver halide photographic products such as color reversal products.
Abstract:
The present invention concerns a novel method of processing a photographic product. In particular, method includes processing a photographic product that comprises a step of surface washing with a solution comprising an oxidizing agent, and a wetting agent. This processing method affords effective washing with a reduced quantity of water.
Abstract:
An improved method for producing multicolor photographic images which resemble color photographs made prior to 1936. Light expressing a photographic image is passed through a transparent multicolor screen (20). Visual characteristics of the image are altered so as to produce darkened tonality, loss of acuteness, muting of hue, and a general sepia color cast.