Abstract:
A method and system for extracting data signals from a scanned image resulting from optical, radiometric, or other types of analysis of a molecular array. The positions of corner features are first located. Then, an initial feature coordinate grid is determined from the positions of the corner features. A refined feature coordinate grid is then calculated based on the positions of strong features, and is used to identify the positions of weak features and the positions of the local background regions surrounding all features. Finally, signal intensity values are extracted from the features and their respective local background regions in the scanned image, and background-subtracted signal intensity values, background-subtracted and normalized signal intensity ratios, and variability information and confidence intervals are determined based on the extracted values.
Abstract:
An infrared ray receiving element includes a substrate made of a pyroelectric material and having at least one cantilever portion surrounded by a slit, in which at least a part of the cantilever portion in the substrate is uniformly polarized in the same direction and the remainder in the substrate includes a portion polarized at random. At least a pair of electrodes are respectively provided on a top surface and a bottom surface of the cantilever portion.
Abstract:
A photodiode photosensor for use in a CMOS imager exhibiting improved infrared response. The photosensor is a diode with an infrared sensitive silicide layer, such as an iridium silicide, formed on a doped substrate. The infrared sensitive silicide is highly sensitive to infrared radiation, especially in the deep infrared spectral range. A reflective layer may be used on the infrared sensitive silicide layer so that infrared radiation entering the diode from the bottom is reflected back to the photodiode. Also disclosed are processes for forming the photodiode.
Abstract:
The present invention relates to an infrared detector element to detect infrared rays by means of a pyroelectric material, and an infrared sensor unit and an infrared detecting device using the infrared detector element and has an object of realizing an omnidirectional infrared detector element that can gain an output against an object to be detected moving in whatever directions. In order to accomplish this object, the present invention proposes a setup comprising a pair of first electrodes (12, 13), which have a function of absorbing infrared rays, are close to trapezoidal in shape, respectively, and are disposed on one of the surfaces of a pyroelectric material (11) with electrical connections made in such a way that the first electrodes are opposite to each other in polarity, and a pair of second electrodes (14, 15) disposed on the other surface of the pyroelectric material (11) and electrically connected with each other, in which the lower side of the close to trapezoidal shape of the first electrodes (12, 13) of one hand is aligned in the same direction as the lower side of the close to trapezoidal shape of the second electrodes (14, 15) of the other hand, thereby producing an effect of gaining an output against an object to be detected making a movement from whatever directions.
Abstract:
A light or laser beam analyzer, using an imaging formation device such as a CCD video camera is equipped with an attenuating controllable filter or electronic shutter. The incoming beam is imaged several consecutive images each with a different attenuation and the spatial power level distribution on the detector's surface is digitized and transmitted to a host computer for further processing. The host computer will present the power distribution and calculate the beam's profile and the beam's shape.
Abstract:
In a method for manufacturing a calibrated radiation dosimeter, a layer of radiation sensitive material is applied to a substrate, the radiation sensitive material having an optical density which varies in accordance with a degree of radiation exposure. A pre-exposure optical density of the layer of radiation sensitive material is optically measured and subsequently the layer of radiation sensitive material is exposed to a known dose of radiation. Thereafter, a post-exposure optical density of the layer of radiation sensitive material is optically measured. Using at least the pre-exposure optical density, the post-exposure optical density, and the known dose of radiation, one computes mathematical parameters defining a predetermined mathematical function. The computed mathematical parameters are applied in encoded form to the substrate (e.g., printed in bar code form on the substrate or a holder card).