Abstract:
A power tool includes a housing, a motor received in the housing, an output driven by the motor, and a control system. The control system includes a rotational motion sensor configured to generate a rotational motion signal that corresponds to a rotational motion of the housing about an axis, a current sensor configured to generate a motor current signal that corresponds to an amount of current drawn by the motor, and a control circuit that is configured to receive the rotational motion signal and the motor current signal and to control operation of the motor. The control circuit is configured: (a) to determine, based on the current signal, whether a detected kickback condition is likely to be false; (b) to determine, based upon the rotational motion signal, whether an uncontrolled kickback condition has occurred; and (c) to initiate one or more protective operations upon determining that an uncontrolled kickback condition has occurred and is not likely to be false.
Abstract:
Techniques and architecture are disclosed for providing an optical system having an on-axis, internally mounted inertial measurement unit (IMU). In some cases, an IMU may be mounted within an interior region/cavity of an inner housing, which intern is configured to rotate within, an outer housing. In some instances, a mirror assembly may be operatively coupled with the inner housing and permitted to rotate simultaneously with the IMU. Rotation of the inner housing may be achieved, in some example cases, by use of a suitable motor. In some instances, positioning componentry may be operatively coupled with one or more of the IMU and/or mirror assembly. Improvements in mechanical stability, system dimensions, and/or protection from external/environmental hazards may be realized, in some example cases.
Abstract:
The present invention relates to an inertial measurement device secured to a structure of a vehicle for which it is desired to measure speeds and/or accelerations, the device comprising at least one piece of moving equipment in rotation about a stationary axis of rotation Y relative to the structure, said moving equipment including at least two measurement device having respective sensitivity axes X′ and Z′ that are mutually orthogonal and that lie in a plane perpendicular to the stationary axis of rotation Y, a motor for driving the moving equipment in rotation, device for determining the angular position of the moving equipment, device for responding to the angular position of the moving equipment to determine the projection of the measurements taken in the rotary frame of reference axes X′ and Z′ by the said at least two measurement device onto a vehicle frame of reference X and Z.
Abstract:
A rotational vibration type gyro 1 is provided by which a detection sensitivity influence of the other axis direction on detection sensitivity in a detection axis direction. The rotational vibration type gyro 1 has: a drive weight 4, drive electrodes 3, a detection weight 5 having a pair of X-axis divisional detection weights 5A, 5A and a pair of Y-axis divisional detection weights 5B, 5B, an anchor 6, a pair of X-axis weight support springs 7A, 7A and a pair of Y-axis weight support springs 7B, 7B, a pair of X-axis weight connection springs 8A, 8A and a pair of Y-axis weight connection springs 8B, 8B, and a pair of X-axis detection electrodes 9A, 9A and a pair of Y-axis detection electrodes 9B, 9B.
Abstract:
Electric Machines (i.e., electric motors or generators) convert electricity to mechanical work (or vice versa) by applying mechanical power to the shaft of the electric machine or extracting mechanical power form the shaft of the electric machine. This restricts the electrical characteristics, such as frequency or voltage, to the movement of the shaft of the electric machine in accordance to electric machine theory. In some cases, it is desired to perform electromechanical conversion from unorthodox movement, such as pulsating movement, slow movement, or low power movement. In many cases this is not possible with even electronic control without a transmission to convert the mechanical power to a compatible motion. However, by pre-establishing the compatible speed and inertial momentum of the rotor body of the electric machine while moving the entire body of the electric machine in accordance to the incompatible movement, the mechanical energy of the movement can be readily produced or absorbed to desired electrical characteristics.
Abstract:
The present invention provides a drive circuit of an oscillation gyro including two piezoelectric elements formed in an oscillator, which includes an adding circuit for supplying a drive signal to one side faces of the two piezoelectric elements and adding signals obtained from the other side faces opposed to the one side faces of the piezoelectric elements, and an oscillation circuit adapted to be fed back with an addition output signal obtained by the adding circuit, wherein a sine wave signal obtained as an oscillation output of the oscillation circuit is supplied to the one side faces of the two piezoelectric elements as the drive signal. Thus, the drive circuit of the oscillation gyro which obtains the stable output with the simple configuration can be provided.
Abstract:
In a method for electronic tuning of the frequency of the read oscillation to the frequency of the stimulation oscillation in a Coriolis gyro, the resonator of the Coriolis gyro has a disturbance force applied to it such that the stimulation oscillation remains essentially uninfluenced. The read oscillation is changed so that a read signal that represents the read oscillation contains a corresponding disturbance component. The frequency of the read oscillation is controlled so that the magnitude of the disturbance component contained in the read signal is a minimum.
Abstract:
A gyro bearing and caging mechanism in which a spherical gyro rotor is driven by an induction motor with bearing surfaces between the rotor and stator having a magnetic fluid that is held in place at discrete positions around the circumference of the rotor by permanent magnets imbedded in the spherical rotor and a movable caging plate with magnets in a surface thereof and magnetic fluid between surfaces of the caging plate and a top surface of the rotor for caging the rotor.
Abstract:
A two-axis gyroscope in which precession may be effected by application of a DC current to the stationary precession windings. The rotor assembly has a pair of ring-shaped permanent magnets with their magnetic vectors aligned parallel with the gyro spin axis. This structure presents a magnetic field to the precession windings which does not change as the rotor assembly rotates. Thus the gyroscope may be precessed by application of a DC current to the precession windings. The precession windings are located along two orthogonal axes to allow precession of the gyro in two orthogonal directions.
Abstract:
In order to eliminate the day-to-day gyro drift phenomena which result from interaction of the magnetic pole position of the synchronous motor typically used to drive the gyro and the gyro wheel, an induction motor controlled by a phase locked loop referenced to an appropriate control frequency is utilized to drive the gyro.