Abstract:
Methods and apparatus for combusting a fuel with an oxidant are described, the apparatus comprising a ceramic burner block, the burner block having a back face and a front face. The burner block has at least one oxidant cavity in an upper portion of the burner block, and at least one fuel cavity in a lower portion of the burner block, each cavity extending from the back face to the front face. The at least one oxidant cavity has positioned therein a fuel supply conduit, the fuel supply conduit having a fuel supply conduit exit positioned a sufficient distance from the front face to allow combustion of at least a portion of fuel exiting the fuel supply conduit exit with at least some of the oxidant traversing the oxidant cavity, and the least one fuel cavity having connected thereto, near the back face, an oxidant conduit, thereby allowing mixing of a minor portion of the oxidant with the fuel.
Abstract:
A hydraulically powered rail pre-heater for heating rail ends before they are welded together, which includes a blower driven by a hydraulic motor for producing a substantially constant flow of air, a source for propane gas or other combustible media to be regulated and mixed and then delivered to a torch for the application of a flame to the rail ends.
Abstract:
A system for providing gases into an injection volume in one or more coherent gas jets proximate to one or more turbulent gas jets wherein a coherent gas jet is formed in a forming volume with a flame envelope prior to passage into the injection volume into which the turbulent gas jets are directly passed.
Abstract:
Multi-stage combustion technology combined with nitrogen-enriched air technology for controlling the combustion temperature and products to extend the maintenance and lifetime cycles of materials in contact with combustion products and to reduce pollutants while maintaining relatively high combustion and thermal cycle efficiencies. The first stage of combustion operates fuel rich where most of the heat of combustion is released by burning it with nitrogen-enriched air. Part of the energy in the combustion gases is used to perform work or to provide heat. The cooled combustion gases are reheated by additional stages of combustion until the last stage is at or near stoichiometric conditions. Additional energy is extracted from each stage to result in relatively high thermal cycle efficiency. The air is enriched with nitrogen using air separation technologies such as diffusion, permeable membrane, absorption, and cryogenics. The combustion method is applicable to many types of combustion equipment, including: boilers, burners, turbines, internal combustion engines, and many types of fuel including hydrogen and carbon-based fuels including methane and coal.
Abstract:
Improved methods and apparatus for burning fuel with low NOx formation are provided. A method of the invention for discharging a mixture of fuel gas and air into a furnace wherein the mixture is burned and flue gases having a low NOx content are formed includes the following steps. A first portion of the fuel gas is mixed with a first portion of the air to form a primary fuel gas-air mixture. The primary fuel gas-air mixture is discharged into a primary burning zone in the furnace from at least one discharge location surrounded by a wall which extends into the furnace. A second portion of the fuel and a second portion of the air are mixed to form a secondary fuel gas-air mixture. The secondary fuel gas-air mixture is discharged into a secondary burning zone in the furnace from at least one discharge location adjacent to an exterior side of the wall. The secondary fuel gas-air mixture is discharged at a velocity whereby the secondary fuel gas-air mixture is not ignited and burned until the mixture spreads over an exterior side of the wall, mixes with flue gases in the furnace and flows beyond the wall.
Abstract:
A low NOx burner and related method are disclosed including the steps of supplying a first reactant stream and introducing a second reactant stream into the first reactant stream at a first point so as to produce co-flowing streams. This resulting fuel/oxidant stream is discharged into a furnace environment having inert combustion products substantially equilibrated to furnace temperature, so as to entrain the combustion products and mix them together with the co-flowing stream. The temperature of the co-flowing stream is increased by the entrained products until it ignites in a combustion region displaced from the first point. Thus ignition cannot occur until the reactant stream has been diluted by inert products of combustion, reducing both oxygen concentration and peak flame temperature, so as to suppress NOx production.
Abstract:
The invention relates to a combustion process for burning a fuel, in which the point of injection of each main oxidizer jet (7, 8) with respect to the point of injection of a fuel jet (4) closest to it is arranged a distance D away satisfying the following relation: D A > 5 and / or D B > 5 D being the minimum distance between the outer edge of the relevant oxidizer jet (7, 8) and the outer edge of the fuel jet (4) closest to it, at their respective points of injection, A and B being, respectively, the cross section of the main jet (7, 8) of the oxidizer and the cross section of the fuel jet, considered at their respective points of injection.
Abstract:
The present invention relates to a method of operating a burner, which comprises at least one first fuel supply conduit (5) with a first group of fuel outlet openings (6), essentially arranged in the direction of a burner longitudinal axis (3), for a first premix fuel quantity and one or a plurality of second fuel supply conduits (7) with a second group of fuel outlet openings (8), essentially arranged in the direction of the burner longitudinal axis (3), for a second premix fuel quantity, it being possible to admit fuel to the second fuel supply conduits (7) independently of the first fuel supply conduit (5). In the method, both fuel supply conduits (5, 7) are operated with the same fuel. By means of the present method of operating a burner, optimum mixing conditions can be set even in the case of different loads, gas qualities or gas preheat temperatures.
Abstract:
An air-oxygen hydrogen sulphide burner (108) fires into a furnace (102). The burner comprises a main passage for combustion-supporting gas containing air (112), a multiplicity of spaced apart outer elongate fluid-conducting open ended tubes extending in parallel with each other along the main passage, each of the outlet tubes surrounding at least at the distal end of the burner a respective inner elongate fluid-conducting open ended tube, the inner tubes extending in parallel with one another, a first inlet to the burner for oxygen or oxygen-enriched air, and a second inlet to the burner for feed gas containing hydrogen sulphide, the first inlet communicating with the inner tubs, and the second inlets communicating with the outer tubes.
Abstract:
A coherent jet lance and operating method wherein the need for a lance extension is eliminated using a single ring of ports to deliver flame envelope gases around the primary gas jets to maintain the gas jets coherent.