Abstract:
A burner combustion method is employed in which at least two burners (2) are disposed opposite each other in a furnace (1) so as to cause combustion, the method comprising:cyclically changing at least one of a flow rate of a fuel fluid and a flow rate of an oxidant fluid supplied to the respective burners (2) while cyclically changing a concentration of oxygen in the oxidant fluid thereby cyclically changing an oxygen ratio obtained by dividing a supply oxygen amount by a theoretically required oxygen amount, whereby, the burners (2) are made to cause combustion in a cyclical oscillation state, whereinwith respect to the cyclical change in an oscillation state of the burners (2), a phase difference is provided between a cyclical change in an oscillation state of at least one burner (2) and cyclical changes in oscillation states of other burners (2).
Abstract:
A method of low-NOx combustion and a burner device for effecting the same, in which a primary fuel is injected in a direction from tile periphery of stream of a combustion air towards that same combustion air, effecting a first combustion, so as to create a generally cylindrical primary flame covering the combustion air, whereby a secondary fuel injected towards the combustion air is shielded or intercepted by such primary flame from the combustion air, while causing NOx in tile primary flame to be reduced by the secondary fuel, after which, a second combustion is effected by bringing the secondary fuel to contact with a portion of the combustion air penetrating through the primary flame, at a downstream side. This arrangement permits more positive decrease of NOx density in an exhaust gas.
Abstract:
A low NOx gaseous fuel burner that creates a wall hugging flame, even in a cup. It is comprised of two staged premix units, one unit, in a cup, running very lean and the second unit, extended into the furnace, running very rich, the combination being stoichiometric.
Abstract:
A heater for heating gases such as turbine exhaust gases to facilitate the extraction of the heat energy carried by such gases or flue gases to reduce their corrosiveness. The heater is defined by burners installed on walls of the duct through which the gases flow. The burner can be operated with heavy fuel oil and normally uses no more primary air than is necessary to ignite the fuel oil atomized by the burner and sustain a flame. The flame is relatively long and narrow and is directed transversely to the gas flow into the duct. Upstream of the burner is a shield to protect the flame from the gas flow. The shield communicates with a register which collects an amount of gas sufficient to provide the balance of the combustion oxygen to fully combust all fuel. From the register the gas flows along inclined passages to the side of the shield facing the flame, the passages directing the gas in the direction of the flame and at an oblique angle in regard thereto. The flame shield is shaped to approximate the outline of the flame. Gas not collected by the register is guided by the shield past the flame so as to achieve a uniform heating of the gas and thereby prevent the formation of hot spots in the gas downstream of the heater. For operation in gas streams having a low oxygen content the burner is constructed so that the fuel-to-combustion oxygen ratio in the upstream and downstream portion of the flame (relative to the exhaust gas flow) is substantially equalized.
Abstract:
A burner that is adapted to burn oil, gas, and/or solid fuels has an inner oil and/or gas burner, a primary combustion chamber in coaxial relation with the conventional burner, a passageway surrounding the primary combustion chamber in flow communication therewith and a source of oxygen containing gas and source of combustible particulate solid material, and a conduit in communication with the passageway and mountable in a furnace wall. The burner is adapted in operation to burn oil and/or gas fuels in the combustion chamber, and simultaneously or alone burn combustible particulate solid material passed through the passageway into the combustion chamber''s outlet.
Abstract:
The invention discloses an opposed-injection aluminum melting furnace uniform combustion system which comprises: a furnace body, a first heat storage unit, a second heat storage unit, and four fuel injection guns disposed diagonally on two end walls of the furnace body comprising a first fuel injection gun located on the first end wall of the furnace body adjacent to the second heat storage unit, a second fuel injection gun located on the second end wall of the furnace body adjacent to the first heat storage unit, a third fuel injection gun on the second end wall of the furnace body adjacent to the second heat storage unit, and a fourth fuel injection gun located on the first end wall of the furnace body adjacent to the first heat storage unit, the gas injection direction of the first fuel injection gun is parallel with that of the second fuel injection gun with a spacing H between the axes thereof, the gas injection direction of the third fuel injection gun is parallel with that of the fourth fuel injection gun, with a spacing H between the axes thereof, and the spacing H between the axes is set to a quarter to one tenth of the furnace body width, such that the gas entering the chamber are oppositely-injected to form a swirling flow.
Abstract:
An oxy-fuel burner including a central burner element having a central conduit terminating in a central nozzle and an annular conduit terminating in an annular nozzle surrounding the central conduit, the central conduit flowing a first reactant and the annular conduit flowing a second reactant; a first staging conduit spaced apart from a side of the central burner element and terminating in a first staging nozzle; a second staging conduit spaced apart from an opposite side the central burner element and terminating in a second staging nozzle; a first mechanism to apportion a flow of the second reactant into a non-zero primary flow of the second reactant directed to the annular conduit and a non-zero secondary flow of the second reactant; and a second mechanism to selectively apportion the secondary flow of the second reactant between the staging conduits; wherein one reactant is fuel and the other reactant is oxygen.
Abstract:
An oxy-fuel burner arrangement having a first conduit having a nozzle aperture with an aspect ratio, D1/D2, of greater than or equal to about 2.0. The first conduit is arranged and disposed to provide a first fluid stream, where the first fluid stream is a combustible fuel. The burner arrangement further includes at least one second conduit arranged and disposed to provide a second gas stream circumferentially around the first fluid stream, where the second gas stream includes oxygen. A precombustor is arranged and disposed to receive the first fluid stream and second gas stream where an oxy-fuel flame is produced. The geometry of the nozzle aperture and the cross-sectional geometry of the first conduit are dissimilar.