Abstract:
A differential drive for use on a vehicle to control the transfer of torque between the front and rear axles of a vehicle. The differential drive includes a rotatably driven differential housing supported in a housing. The differential drive also includes a differential gear set arranged and supporting in the differential housing. The differential gear set has at least two side shafts gears and at least two differential gears. The differential drive also includes a torque distribution device having a viscous transmission. The viscous transmission has an inner hub and an outer casing. The inner hub is connected to a first side shaft. The outer casing is connected to one of the side gears. The viscous transmission also connects the output of the first side shaft to one of the side shaft gears.
Abstract:
A method of controlling torque transfer from a torque input source to an outlet source in which an electronically controllable magnetorheological fluid-based torque limiting device is coupled to either a differential pinion gear, a side gear, both the differential pinion gear and side gear, or both side gears of a differential assembly. By introducing current through electronically controllable magnetorheological fluid-based torque-limiting device during a turning or spin-out condition, and thereby increasing the viscosity of the magnetorheological fluid within the torque limiting device, the amount of torque that is transferred to the output source through the differential assembly can be controlled.
Abstract:
A differential includes: a driving member; a first driven member; a second driven member; and a coupling between the driving member and each of the driven members, the coupling includes: an input member connected to one of the driving member, the first driven member and the second driven member; an output member connected to another one of the first driven member and the second driven member, wherein there is a first space between the output member and the input member; a magneto-rheological fluid located in the space; and at least one electromagnet proximate the space.
Abstract:
A differential device for coupling an input shaft, a first output shaft, and a second output shaft is provided. The differential device preferably includes a differential case with a first side gear, a second side gear, a pinion gear, and a hydraulic conduit. The differential device preferably includes a first rotary pump, which preferably functions to pump hydraulic fluid through the hydraulic conduit upon the relative rotational movement of the differential case and the first output shaft and to resist relative rotational movement of the differential case and the first output shaft upon a restriction of the transmittal of hydraulic fluid through the hydraulic conduit. The differential device also preferably includes a valve system, which functions to selectively restrict the transmittal of hydraulic fluid through the hydraulic conduit.
Abstract:
A differential system includes a case, a pair of pinion gears, a pair of side gears and an electrically operable coupling including a magnetically responsive fluid. The coupling selectively drivingly interconnects one of the side gears and the case. In one instance, the present invention includes a rotor having a plurality of outwardly extending blades positioned in communication with a magneto-rheological fluid. An electromagnet is selectively actuated to change the viscosity of the magneto-rheological fluid. In this manner, the differential may function as an “open” differential, a “locked” differential or a differential accommodating a limited-slip condition.
Abstract:
A hydraulic coupling assembly is provided for an auxiliary drive axle of an all wheel drive motor vehicle. The hydraulic coupling assembly comprises a rotatable casing, first and second output shafts axially outwardly extending from said casing, at least one hydraulically operated, selectively engageable friction clutch assembly for operatively coupling the casing to at least one of the output shafts, and at least one hydraulic clutch actuator. The hydraulic actuator includes a hydraulic pump located within the casing and adapted to generate a hydraulic pressure to frictionally load the friction clutch assembly, and a variable pressure relief valve assembly fluidly communicating with the hydraulic pump to selectively control the hydraulic pressure generated by the pump. The variable pressure relief valve assembly includes an electro-magnetic actuator selectively for varying a release pressure of the pressure relief valve assembly based on a magnitude of an electric current applied thereto.
Abstract:
A hydraulic device to limit slip can be used in the vehicle's main differential and the vehicle's inter-axle differential. The device includes a cylinder body connected to an input shaft, pistons disposed within radial cylinder bores in the cylinder body, and a cam ring connected to the output shaft, and disposed adjacent the pistons. The cylinder body is generally ring-shaped and has at least one pair of cylinder bores connected by an orifice spaced radially around the cylinder body interior bore. One of the radial cylinder bores in the pair is filled with hydraulic fluid. One piston protrudes from its corresponding radial cylinder bore. The cam ring is also generally ring-shaped having one lobe around its outer circumference per radial cylinder bore pair. As the cylinder body rotates along with the input shaft, the pistons interact with the cam ring lobes. The lobe forces the protruding piston into its corresponding radial cylinder bore. The hydraulic fluid is forced through the orifice and into the other radial cylinder bore in the pair and forces the other piston in the pair to protrude from its radial cylinder bore an to contact the cam ring. The interaction between the cam ring and the pistons creates a drag force that causes the cam ring to rotate with the cylinder bore.