Abstract:
A control device for adjusting an amount of fuel to be supplied to a gas turbine based on a rotational speed of the gas turbine, such that a frequency of electric power output by a power generator that generates electric power using the gas turbine is within a given range, includes a load value acquisition unit configured to acquire a load value that is a value of a load applied to the power generator after cutoff of a part of the load applied to the power generator when the part of the load applied to the power generator is cut off, an arithmetic unit configured to calculate an adjusted value that is a value of the load different from the load value by carrying out an arithmetic operation on the load value and a bias, and a command unit configured to adjust the amount of fuel by outputting a first signal for causing the power generator to output electric power corresponding to the adjusted value.
Abstract:
A compressor blade mounting arrangement includes a compressor blade having an airfoil, a base attachment and a platform disposed between the airfoil and the base attachment. The base attachment includes a first root portion extending radially inwardly from the platform and a second root portion extending radially inwardly from the platform, the first root portion and the second root portion defining a hollow portion therebetween. The base attachment also includes a compression plate disposed within the hollow portion and in fitted engagement with the first root portion and the second root portion. The base portion further includes at least one tab protruding from at least one of the first root portion and the second root portion. The compressor blade mounting arrangement also includes a wheel including a channel extending from a base wall to a rim of the wheel, the channel having a varying opening width.
Abstract:
The present invention comprises a highly supercharged, regenerative gas-turbine system. The gas turbine comprises a compressor, a regenerator, a combustor, and an expander. A pre-compressor pressurizes air going into the compressor section of the gas turbine. A cooler lowers the temperature of the air going into the compressor. The compressor pressurizes air, which then flows through the regenerator, which heats the air before it enters the combustor. The combustor further heats the air which then flows through the expander and then the regenerator. A post-expander is preferably located downstream of the regenerator. The post-expander is a second expander that receives high-pressure gas exiting the regenerator. The post-expander preferably drives the pre-compressor. The preferred pre-compressor and post-expander are toroidal intersecting vane machines (TIVMs), which are positive-displacement rotary devices. Numerous alternated embodiments of this basic system are described.
Abstract:
A microturbine for the generation of mechanical and electrical power comprising a positive displacement axial vane rotary compressor and an axial vane rotary expander. The compressor and expander are joined by a common shaft. The system further includes at least one combustor for heating a driving fluid prior to its entering the expander. The driving fluid, such as air, enters the compressor at ambient conditions of pressure and temperature and is compressed. The compressed driving fluid is preheated by the exhaust from the expander, then passes through a combustor to bring its temperature to a desired expander inlet temperature and then enters the expander where the expansion force of the hot driving fluid acting against the vanes of the expander is translated into rotation of the common shaft for driving both the compressor and a suitable power device such as an electrical generator.
Abstract:
A method of assembling a gas turbine engine includes setting a build clearance at assembly in response to a running tip clearance defined with a cooled cooling air. A method of operating a gas turbine engine includes supplying a cooled cooling air to a high pressure turbine in response to an engine rotor speed.
Abstract:
An engine having an annular cylinder formed about an opening which utilizes an arc-piston reciprocally positioned in the annular cylinder with a partition secured within the annular cylinder separating the annular cylinder into an air intake compression chamber and a gas combustion chamber such that in use upon reciprocation of the arc-piston one of the chambers is expanding while the remaining of the chambers is contacting is disclosed. Within the opening a conventional gas turbine may be positioned and the rotational power of the arc-piston engine is combined with the rotational power of the gas turbine.
Abstract:
The method of energy conversion consists in burning a fuel in an oxidizing gas in order to admit the combustion gases into an expansion machine for delivering mechanical energy, in previously compressing the oxidizing gas in a positive-displacement compressor driven by the expansion machine, in injecting into the compressor a sealing and/or lubricating auxiliary liquid which is continuously cooled and separated from the compressed gas, then re-injected into the compressor. The auxiliary liquid is cooled by vaporization of water and the steam produced is entrained in the stream of compressed oxidizing gas.
Abstract:
A segmented annular heat shield for mounting between the turbine blade wheel and the compressor impeller of a radial gas turbine. Each segment is fixedly secured to a stationary structure at one point at its outer edge and also fastened to said structure at two further fastening points at its inner edge in such a manner that at these further fastening points the segment is restrained from movement in the axial direction of the shield but can move freely in the plane of the segment. The segments adjoin along joints of such a design as to admit of relative movement of the segments in the plane thereof due to heat expansion.