Abstract:
A system for purifying a fibrous suspension consists of multiple hydro-cyclones arranged adjacent to one another in a row, each of the hydro-cyclones having at least one feed connection, one accepted stock connection and one reject material connection, and having at least one supply manifold which is connected to multiple feed connections and/or having at least one accepted stock manifold which is connected to multiple accepted stock connections and/or having at least one reject material manifold which is connected to multiple reject material connections, the manifold being elongated and the corresponding connections discharge at their longitudinal side into the corresponding manifold. At an end of at least one manifold which follows the final hydro-cyclone, a fluid or a suspension is guided via at least one flushing connection into or out of the manifold.
Abstract:
A process for manufacturing a web material is disclosed. The process generally provides the steps of: a. providing a pulp material comprising fibers and vessels; b. separating said vessels from said fibers in said pulp material to form a slurry having at least about 7 percent less vessels per meter than said pulp material; and c. processing said slurry to form said web material.
Abstract:
A system for treating cellulosic fibers to improve paper, board and tissue quality; the system involves splitting fibers into an original portion having original fibers and a refinable portion. The refinable portion may further be fractionated by one or more fibers properties by a fiber fractionation system into a first fraction and a second fraction. The refinable portion as a whole, or a fractionated fraction thereof, is then refined to produce refined fibers. Varying amounts of the original unrefined fibers, refined fibers and possibly additionally fractionated unrefined fibers are blended together to form an optimized slurry that is processed by a paper machine into an optimized paper product. A master control system, fiber measurement system and optional fractionation maintenance system are integrated with the overall system to regulate all processing.
Abstract:
A sheet manufacturing apparatus includes a defibrating unit configured to defibrate a stock material including fibers, a screening unit configured to allow a defibrated material that has been defibrated at the defibrating unit to pass through a plurality of openings, and a forming unit configured to form a sheet by using a passed material that has passed through the openings. The screening unit has a sieve unit having the openings, and a transferring unit that is located below the sieve unit and with which the cross-sectional area of an internal space in a horizontal direction decreases going downward.
Abstract:
A paper recycling device includes a dry type defibrator, a first transport unit, a classifier unit, a second transport unit a paper forming unit and a control unit. The dry type defibrator unit is configured to defibrate first paper into defibrated material. The first transport unit is configured to transport the defibrated material after being defibrated by the dry type defibrator unit. The classifier unit is configured to classify by an air flow classification the defibrated material after being transported by the first transport unit. The second transport unit is configured to transport the defibrated material after being classified by the classifier unit. The paper forming unit is configured to for second paper with the defibrated material after being transported by the second transport unit. The control unit is configured to control volume of the first paper supplied to the dry type defibrator unit.
Abstract:
The sheet manufacturing apparatus in the present invention includes a defibration unit configured to cause a rotating unit to rotate and dry-defibrating a defibration object, and at least a part of defibrated material that has been dry-defibrated is deposited and heated to manufacture a sheet. A plurality of rotating plates provided with a base section located on a central rotation axis side and a plurality of protruding sections that protrude out in a direction drawing away from the central rotation axis are stacked in the rotating unit such that the protruding sections are in contact in a direction in which the central rotation axis extends.
Abstract:
The present invention concerns a hydrocyclone for cleaning cellulose suspensions from light impurities i.e. a so called reverse hydrocyclone, having a base end and an apex end and a separation chamber having an elongated shape between the base end and the apex end, at least one inlet arranged at the base end and at least one underflow outlet at the apex end and at least one overflow outlet at the base end. The overflow outlet is provided with an additional, light reject outlet arranged concentrically to a length axis of the hydrocyclone. The invention also concerns a system and a method for producing and/or treating cellulose suspension comprising at least a reverse cleaning stage and at least a dewatering stage.
Abstract:
A hybrid method for processing papermaking fibers to remove high density stickies typically includes utilizing a multistage array of forward cleaners coupled with a flotation cell which increases overall efficiency of the system. In a preferred embodiment, a first rejects aqueous stream from a first stage bank of centrifugal cleaners is treated in a flotation cell before being fed to a second stage bank of centrifugal cleaners. With the improved technique, the accepts from the first stage bank of centrifugal cleaners may be combined with the accepts from the second stage bank of centrifugal cleaners and fed forward to a thickening device, for example. The technique is also suitably employed for removing stickies from material which has already been screened with a fine screen.
Abstract:
The conventional infeed head and inverted cone of a Uniflow cleaner are connected by a generally cylindrical channel dam segment which has an annular inwardly extending channel dam. The narrow end of the inverted cone is connected to a separation body through which a vortex finder extends into the inverted cone. The light reject particles are removed from the input flow through the vortex finder. Accepts and heavy rejects flow into an inverted hydrocyclone chamber within the separation body defined between an outer cylindrical ring and an inner cylindrical ring and the vortex finder. An annular heavy rejects chamber is defined exterior to the outer ring, and fluid is drawn off tangentially therefrom. Accepts flow downwardly though the inner ring into a bowl beneath the separation body, where they are removed from an accepts outlet. The cylindrical or concave surfaces of the separation body are economical to manufacture.
Abstract:
The present invention relates to a method and an arrangement in a fibre reclaimer for cleaning of heavy and light contaminate particles from a fibre suspension and said fibre reclaimer comprises at least a vessel (4) having an opening (15) which via a connection arrangement (1, 2) is connectable to a cyclone. The connection arrangement consists of a cone (1) having an outlet (13) with a predetermined diameter (d) and is inserted and located in a conical mantle (2), which with its free end part (14) is fixed to the opening (15) of the vessel (4), whereby the opening (13) is situated a predetermined distance (A) from the opening (15). The vessel (4) has a suction pipe (3), which with its opening (16) having a predetermined diameter (D), is concentrically situated in the opening (15) for forming a ring shaped opening gap (17) between the pipe (3) and the vessel (4) and which pipe (3) extends downwardly in the vessel ( 4) or adjacent vessles to terminate with its other tail end (18) a predetermined distance from the bottom of the vessel, said distance is depending on if light or heavy contaminate particles shall be separated from the fibre suspension. The method for cleaning of a pulp suspension concerns to achieve a vacuum in the lower part of the cone (1) to resuck pulp suspension from the vessel (4) through the pipe (3), cone (1) and into the cyclone.