Abstract:
A thermal spraying method includes the steps of: (1) preparing a speed-increasing means for adding energy to the heated material or the heating material to increase a flying speed of the material; and (2) adding energy to the heated material or the heating material by the speed-increasing means in such a manner that a flying speed of the heated material or the heating material increases until the material reaches a surface of an object.
Abstract:
The invention relates to a novel thermal spray process for the deposition of coatings with a graded or layered composition and the coated articles produced thereby. More particularly, the invention relates to feeding mixtures of coating materials to a thermal spray device and continuously or intermittently changing the composition of the deposited coatings by changing the thermal spray operating parameters. The continuous or intermittent change in the composition of the coating material during deposition creates a graded or layered coating structure.
Abstract:
This invention relates to methods whereby nanoparticle liquid suspensions are used in conventional thermal spray deposition for the fabrication of high-quality nanostructured coatings. Ultrasound is used for disintegration of the as-synthesized particle agglomerates, nanoparticle dispersion in liquid media, and liquid precursor atomization.
Abstract:
A method for thermally coating the cylinder barrels of a cylinder block of a combustion engine is disclosed. Air flows through the cylinder bore whose barrel is to be coated. This air flow is generated by means of extraction, whereby the air is extracted from the bottom of the cylinder bore through the crank case of the cylinder block. For extracting the air, a plurality of extraction collars are provided that are connected to an extraction fan and are moved from the bottom through the crankcase to the lower end of the cylinder bores. The pressure of the air flowing through extraction conduits to the extraction fan is measured and the value of the velocity of the air flow through the cylinder bore is calculated. An adjustment mechanism controls air chokes in the air conduits in response to the calculated flow velocity present in the cylinder bores.
Abstract:
A process and a device for coating a temperature-stable component with a thermal protection layer (15), in which the temperature-stable component has a surface (12) which is to be coated with the thermal protection layer (15) and at which there is at least one cooling-passage opening (1) which is connected to a cooling passage running inside the component. During the coating a mass flow (10) emerges through the cooling-passage opening (1), the coating takes place by a coating mass flow (11) directed onto the surface (12) which is to be coated, and the mass flow (10) emerges through the cooling-passage opening (1) and the coating mass flow (11) include an angle &agr;≠0°.
Abstract:
In order to produce connecting rod bearings which are easier to mount and which are the larger strongly bonded, the large connecting rod eye is plasma-coated with an aluminum-bronze. At the start of the plasma-spraying process, the plasma layer is deposited at a high temperature in order to ensure that the plasma layer bonds well to the connecting rod eye material and has a low level of porosity. In order to prevent the connecting rod eye material from annealing, the depositing temperature of the plasma layer is reduced so that the material to be removed during subsequent finishing is deposited at a lower temperature. After the plasma-coating process is complete, the connecting rod eye is opened by taking off the bearing cover, thus breaking the plasma layer. The cover is then remounted and the bearing surface is finished by fine spindling. The bearing layer has an annular groove in order to improve the oil holding volume. A particularly strong bond between the aluminum-bronze and the connecting rod material can be achieved by multiple sand-blasting of the surface to be coasted with sand particles of increasing grain size.
Abstract:
The present invention relates to a plasmatron for a plasma coating apparatus including an anode having an axial bore through which gas is passed around a cathode and an electric arc is established between the anode and cathode. A powder feed line or conduit is connected between the anode and a powder feed source. The feed line has a straight section along a portion of its length terminating at the axial bore of the anode. The straight section of feed line has a ratio of length to internal diameter at least about 4.8, preferably 10 and even more preferably 15.
Abstract:
A process for producing a metallic tool, mould, die or other body of significant thickness or a coating, the process comprising directing a spray (3, 4) comprising molten metallic droplets carried by a propelling gas toward an object surface (7) of a substrate or pattern (5) so as to build up a metallic deposit or coating comprising the mould, tool, die, body or coating on the object surface (7) of the substrate or pattern (5), wherein at one or more predetermined stages during spraying droplets of a relatively large mean size are sprayed and at one or more other stages droplets or a relatively smaller mean size are sprayed.
Abstract:
A mixed powder thermal spraying method includes forming a mixed thermal spraying film comprising two kinds of materials having different melting points wherein powder-feeding points are provided for each material; and each powder-feeding port is controlled respectively to externally feed each material, and wherein the thermal powder spraying method is bore thermal spraying carried out with a bent plasma jet.
Abstract:
When bearing layers are producing by thermal coating the coating flame causes oxidation of a part of the coating material. To reduce this oxide formation and especially to lower the formation of oxide clusters in the layer a gas stream is projected next to the burner flame with an oxygen content lower than that of air. Preferably a gas with nitrogen ≧99% is used for the gas stream and as cooling gas for the burner. The method disclosed provides a bearing layer for a connecting rod eye. The large connecting rod eye is subjected to pre-spindle trimming, cracking and further spindle trimming to the coating tolerance, sandblasted and plasma coated with an aluminum bronze to produce a microporous layer. At the start of plasma spraying the plasma layer is deposited at a high temperature, which results in good adhesion of the plasma layer to the material of the connecting rod eye and low porosity of the plasma layer. To prevent annealing of the material of the connecting rod eye, the deposit temperature of the plasma layer is reduced during deposition of material which is removed by subsequent machining of the bearing layer. After plasma coating the connecting rod eye is opened by removing the bearing cap, which ruptures the bearing layer. The cap is then remounted and the final bearing surface is formed by fine spindle trimming. To improve the oil retention volume the bearing layer has an annular groove.