Abstract:
Forming a lithium lanthanum zirconate thin film includes disposing zirconium oxide on a substrate to yield a zirconium oxide coating, contacting the zirconium oxide coating with a solution including a lithium salt and a lanthanum salt, heating the substrate to yield a dried salt coating on the zirconium oxide coating, melting the dried salt coating to yield a molten salt mixture, reacting the molten salt mixture with the zirconium oxide coating to yield lithium lanthanum zirconate, and cooling the lithium lanthanum zirconate to yield a lithium lanthanum zirconate coating on the substrate. In some cases, the zirconium oxide coating is contacted with an aqueous molten salt mixture including a lithium salt and a lanthanum salt, the molten salt mixture is reacted with the zirconium oxide coating to yield lithium lanthanum zirconate, and the lithium lanthanum zirconate is cooled to yield a lithium lanthanum zirconate coating on the substrate.
Abstract:
Disclosed is a method of using a high molecular mass, saturated hydrocarbon acid to generate a chemical conversion coating on light metal surfaces such as aluminum, magnesium, and titanium and their alloys.
Abstract:
A method of bonding a metal to a substrate involves forming an oxide layer on a surface of the substrate, and in a molten state, over-casting the metal on the substrate surface. The over-casting drives a reaction at an interface between the over-cast metal and the oxide layer to form another oxide. The other oxide binds the metal to the substrate surface upon solidification of the over-cast metal.
Abstract:
A process is disclosed for the protection of magnesium based alloys containing aluminum by treatment with eutectic mixtures of fused salts to provide a corrosion resistant outer layer on the magnesium based alloy. A suitable fused salt mixture comprises urea and at least one of ammonium nitrate or ammonium nitrite. A magnesium based alloy is also disclosed comprising magnesium and aluminum having a corrosion resistant outer layer comprising magnesium oxide and aluminum oxide; the proportion of aluminum present in the outer layer being enriched in proportion to the amount present in the magnesium based alloy.
Abstract:
The surface oxidation process of the zinc or of a zinc coating consists of immersion of the zinc in an electrolytic cell, where a direct current of selected magnitude is driven and where the electrolytic bath consists essentially of a solution in an alkali metal nitrate melted mixture either of an hexavalent oxide of the type XO3 or of a salt of the type Y2XO4 or of a salt of the type Y2Cr2O7, where X represents an element selected in the group of chromium molybdenum and tungstenum and Y an element selected between sodium and potassium. When solution of hexavalent chrome CrH3 in a mixture of melted alkali metal nitrates is used as bath, the oxidizing process can be carried out without current in the cell, by mere immersion of the zinc.
Abstract:
A method for enhancing corrosion resistance of a solid material exposed to a liquid. The method includes providing a solid material which can form a solid product layer when exposed to the corrosive liquid, and maintaining the concentration of the solid product material in the liquid either at saturation or elevated level. A materials system containing a solid material capable of forming a solid product layer when exposed to air or a liquid environment containing dissolved oxygen at levels sufficient for oxidation of at least one constituent of the solid material, wherein the solid product layer is in contact with a liquid containing an elevated or saturated concentration of the dissolved solid product layer. A corrosion-resistant device containing a solid material with a solid-product layer exposed to a molten salt solution, wherein the concentration of the solid-product dissolved in the molten salt solution is at saturation or elevated level.
Abstract:
A method for hardening the surfaces of work pieces made from stainless steel includes submerging the work pieces into a molten salt bath having the composition: potassium acetate 60-100 weight %; sodium acetate 0-100 weight %; metal salt 0-2 weight %, and are subjecting the work pieces to the molten salt bath for a period of 24 to 240 hours, during which the temperature of the molten salt bath is maintained less than 400° C.
Abstract:
The invention relates to a method of making a refractory carbide layer on the accessible surface of a C/C composite material, the method including a step consisting in placing the composite material in contact with a reactive composition in solid form that contains an atomic proportion greater than or equal to one-third and less than or equal to 95% of a metal that is a precursor of a determined carbide having a melting temperature greater than 2000° C., and an atomic proportion of silicon that is greater than or equal to 5% and less than or equal to two-thirds. The method further includes a step consisting in impregnating the accessible surface of the C/C composite material with the reactive composition melted at a temperature that is greater than or equal to the melting temperature of the metal that is a precursor of a determined carbide.
Abstract:
A diamond, ceramic, metal, or metal alloy surface is coated with molten Csub.3. The coated surface is then heated in air at a temperature of from about 200.degree. C. to 250.degree. C. until the molten CrO.sub.3 coating is converted into a black, powdery adherent coating of CrO.