Abstract:
A process and an installation for treating solid carbonaceous material comprises heating the material to a temperature of about 1800° C. or higher, by means of a non-transfer arc generated plasma flame. This causes components of, or present in, the carbonaceous material to be gasified and thus to be separated or removed from any residual solid material as a hot gas phase, with residual solid material being obtained as a product. The installation comprises a vertical shaft non-transfer arc plasma reactor comprising an upper preheating zone (14) an intermediate reaction zone (16) in which at least one non-transfer arc plasma generator or reactor (40) is located and a lower cooling zone (18).
Abstract:
A method of regulating the calorific power of a stream of gaseous fuel of the fossil-gas type, comprising a predominant fuel gas, denoted “A” and flowing in a pipe. This regulation is performed, at least partly, by controlled addition of at least one fuel gas called having a calorific power greater than that of “A” into the stream. The subject of the invention is also its apparatus for implementation and its applications.
Abstract:
Disclosed is a method of estimating the outflow amount for each component of the effluent of a coal liquefying reactor consisting of vessel type reactors (16a, 16b, 16c) operated under a high temperature and a high pressure. The outflow amount for each component of the effluent is assumed, and the gas-liquid equilibrium composition of the mixture of the composition within the reaction vessel is calculated. Further, the volume flow rates of the gaseous phase and the liquid phase within the reaction vessel are calculated, and the residence time (&tgr;1G, &tgr;2G, &tgr;3G), (&tgr;1S, &tgr;2S, &tgr;3S) of each of the gaseous phase and the liquid phase is calculated on the basis of the gas hold-up within the reaction vessel calculated on the basis of the volume flow rate and the empirical formula. The outflow amount for each component of the effluent is calculated on the basis of the residence time (&tgr;1, &tgr;, . . . &tgr;n) within the reaction vessel, the inflow amount for each component of the influent into the reactor, and the primary irreversible reaction rate formula derived from a specified coal liquefying reaction model. The effluent amount for each component assumed first is compared with the effluent amount for each component obtained by calculation, and the series of calculations are repeated until these two effluent amounts for each component coincide with each other within a predetermined range of error.
Abstract:
A process is described for converting gaseous lower alkanes, e.g. methane, into synthesis gas. In the process, a mixture of the alkanes and oxygen is subjected to partial oxidation in a reaction zone in the presence of a catalyst comprising a mesoporous aluminosilicate solid catalyst having the structure of MCM-41 with a silica-to-alumina ratio of about 5:1 to 1000:1 pore diameters of at least 5 Å and a nickel loading of about 5-20% by weight. This provides a high level of conversion of the alkanes as well as a high selectivity to formation of carbon monoxide and hydrogen.
Abstract:
A method of improving fuel efficiency in combustion chambers, for simultaneously enhancing combustion of hydrocarbon fuels while inhibiting nitrogen oxidation. A mixture of vaporous metallic compounds is introduced into the flame zone of a combustion chamber, such that this mixture is held by gases in the flame zone prior to and during the combustion of the fuel, and the mixture is thereby ionized prior to or during the combustion. The ionized mixture of compounds contains platinum, rhodium, rhenium, molybdenum, aluminum and ruthenium.