摘要:
The present invention provides a process for manufacture of potassium nitrate from potassium chloride and nitric acid. A source of potassium chloride may be screened and separated into fine and coarse fractions, or the screening may be eliminated and the source may be separated into equal coarse fractions. The coarse fraction, when screening has occurred, or one of the equal fractions, where no screening has occurred, is dissolved in a dilute solution of nitric acid prior to any reaction. Thereafter, either the fine fraction (if screening occurred) or the other equal fraction (if no screening occurred) reacts with the dilute nitric acid-potassium chloride solution and additional nitric acid having a concentration of about 60% at ambient temperature. The resulting solution may be crystallized with or without the prior separation of solid potassium nitrate. Nitric acid is recovered by solvents from a residual brine solution after crystallization. The recovered nitric acid is washed to provide a nitric acid solution having a concentration of 3% to 10% which is recycled for use at the beginning of the process to dissolve the coarse fraction of potassium chloride prior to the reaction stage.
摘要:
An industrial waste salt resourceful treatment method comprises the following steps: the industrial waste salt is sequentially subject to dissolving, chemical pre-purification, deep purification, organic matter concentration reduction, adsorption and oxidation decolorization and multi-effect evaporative crystallization to respectively obtain sodium sulfate, sodium chloride and sodium nitrate crystals; the crystallization temperature of sodium sulfate is in a range of 75° C. to 85° C.; the crystallization temperature of sodium chloride is in a range of 60 to 70° C.; and the crystallization temperature of sodium nitrate is in a range of 45° C. to 55° C. An industrial waste salt resourceful treatment device is further provided.
摘要:
Provided is a method and an apparatus for purifying potassium nitrate from the solid waste produced by a chemical glass-strengthening process. In the method, the solid waste is melted into a liquid waste at first. Potassium nitrate of various purity grades can be obtained by batch processing the liquid waste through stepwise cooling processes of cooling the liquid waste to a first temperature facilitating the potassium nitrate contained in the liquid waste to be crystallized at a first rate and then cooling the liquid waste to a second temperature close to the freezing point of the potassium nitrate at a second rate that is slower than the first rate. The recovered potassium nitrate from the solid waste can be recycled and reused.
摘要:
Provided is a method and an apparatus for purifying potassium nitrate from the solid waste produced by a chemical glass-strengthening process. In the method, the solid waste is melted into a liquid waste at first. Potassium nitrate of various purity grades can be obtained by batch processing the liquid waste through stepwise cooling processes of cooling the liquid waste to a first temperature facilitating the potassium nitrate contained in the liquid waste to be crystallized at a first rate and then cooling the liquid waste to a second temperature close to the freezing point of the potassium nitrate at a second rate that is slower than the first rate. The recovered potassium nitrate from the solid waste can be recycled and reused.
摘要:
A process is disclosed for removing heavy metal contaminants from impure alkali metal nitrates containing them. The process comprises mixing the impure nitrates with sufficient water to form a concentrated aqueous solution of the impure nitrates, adjusting the pH of the resulting solution to preferably within the range of between about 2 and about 4, adjusting the nitrite ion concentration to between about 0.07 molar and about 1.0 molar, to effect reduction of the heavy metal contaminants, adjusting the pH of the reduced solution to effect precipitation of heavy metal impurities, and separating the solid impurities from the resulting purified aqueous solution of alkali metal nitrates. The resulting purified solution of alkali metal nitrates may be heated to evaporate water therefrom to produce purified molten alkali metal nitrate suitable for use as a heat transfer medium. If desired, the purified molten form may be granulated and cooled to form discrete solid particles of alkali metal nitrates.
摘要:
A process is disclosed for removing contaminants from impure alkali metal nitrates containing them. The process comprises heating the impure alkali metal nitrates in solution form or molten form at a temperature and for a time sufficient to effect precipitation of solid impurities and separating the solid impurities from the resulting purified alkali metal nitrates. The resulting purified alkali metal nitrates in solution form may be heated to evaporate water therefrom to produce purified molten alkali metal nitrates suitable for use as a heat transfer medium. If desired, the purified molten form may be granulated and cooled to form discrete solid particles of purified alkali metal nitrates.
摘要:
A nonaqueous, in-line method for removing carbonate and hydroxide contamination from a molten mixed sodium nitrate/potassium nitrate heat transfer salt. The method comprises dissolving a stoichiometric quantity of anhydrous Ca(NO.sub.3).sub.2 in the melt whereby an insoluble CaCO.sub.3 and Ca(OH).sub.2 precipitate is formed. The precipitate can be removed by settling, filtration or floatation techniques.
摘要:
A process for producing KNO3 from polyhalite to is disclosed. In a preferred embodiment, the process comprises steps of (a) contacting polyhalite with HNO3; (b) adding Ca(OH)2 to the solution, thereby precipitating as CaSO4 at least part of the sulfate present in said solution; (c) precipitating as Mg(OH)2 at least part of the Mg2+ remaining in said solution by further addition of Ca(OH)2 to the remaining solution; (d) concentrating the solution, thereby precipitating as a sulfate compound at least part of the sulfate remaining in solution; (e) separating at least part of the NaCl from the solution remaining; and (f) crystallizing as solid KNO3 at least part of the K+ and NO3-contained in the solution. The process enables direct conversion of polyhalite to KNO3 of purity exceeding 98.5% and that is essentially free of magnesium and sulfate impurities.
摘要:
A process is disclosed for removing heavy metal contaminants from impure alkali metal nitrates containing them. The process comprises mixing the impure nitrates with sufficient water to form a concentrated aqueous solution of the impure nitrates, adjusting the pH of the resulting solution to within the range of between about 2 and about 7, adding sufficient reducing agent to react with heavy metal contaminants within said solution, adjusting the pH of the solution containing reducing agent to effect precipitation of heavy metal impurities and separating the solid impurities from the resulting purified aqueous solution of alkali metal nitrates. The resulting purified solution of alkali metal nitrates may be heated to evaporate water therefrom to produce purified molten alkali metal nitrate suitable for use as a heat transfer medium. If desired, the purified molten form may be granulated and cooled to form discrete solid particles of alkali metal nitrates.