Abstract:
An underwater robotic device includes a housing unit, a control unit and a propelling unit. The housing unit includes a base seat and an upper cover in liquid-tight engagement with the base seat. The control unit is disposed within the housing unit and includes a circuit module and a center-of-gravity transferring module which is electronically connected with the circuit module. The center-of-gravity transferring module has a movable weight member and a transfer driving mechanism which drives movement of the weight member so as to vary a position of a center of gravity of the underwater robotic device and to control downward and upward moving directions of the underwater robotic device in the water. The propelling unit is connected with the housing unit and is electronically connected with the control unit to produce a propelling force to move the underwater robotic device forward in the water.
Abstract:
A toy atomization device construction elements decoration comprises a base 1. An opening water tank 2 is integrated into the humidifier base 1. A water inlet 8 is opening on the upper surface of the casing 111. The inside of the base 1 is combined with the water tank 2 and an atomizing chamber 3.
Abstract:
A swinging mechanism for a toy includes a speed-reduction gear assembly driven by a motor, a linkage, a pair of swing blade units, and an eccentric unit. The speed-reduction gear assembly has a drive gear and a driven gear. The linkage has an actuating link and a carrier link. The carrier link has a turning axis between two opposite ends thereof. The actuating link has an end fixed to the carrier link adjacent to the turning axis. Each of the swing blade units has at least an inner blade and an outer blade hinged to one another. The inner blades of the swing blade units have inner ends connected pivotally and respectively to the two opposite ends of the carrier link. The outer blades of the swing blade units are juxtaposed side by side and have outer ends connected pivotally to one another. The inner and outer blades of the swing blade units have adjoining ends between the inner and outer ends, and hinge pins which interconnect the adjoining ends, respectively. The hinge pins are parallel to the turning axis of the carrier link. The eccentric unit interconnects the driven gear and the actuating link for turning the carrier link by rocking the actuating link so as to pull one of the inner blades inward while pushing the other one of the inner blades outward, thereby simultaneously turning the outer blades to and fro about the hinge pins.
Abstract:
The presently disclosed subject matter is directed to a bath vessel that is capable of moving across the water through the production of bubbles. The disclosed bath vessel comprises an interior compartment that is sized and shaped to house an effervescent source that generates a gas upon contact with a fluid, such as water. The vessel further includes a discharge port in connected relationship with the interior compartment. In use, the effervescent source generates a gas (e.g., bubbles) that exit through the discharge port and propel the vessel through the fluid.
Abstract:
An apparatus or educational toy comprising a main body (120, 220, 320, 520) and a drive mechanism (140, 240, 340, 540), wherein the drive mechanism (140, 240, 340, 540) comprises a reservoir (142, 242, 342) for storing a driving liquid, a discharge outlet (144, 244a, 244b, 344, 544a, 544b) through which the driving liquid is discharged from the main body (120, 220, 320, 520) to generate a driving thrust, a liquid delivery path (146, 246a, 246b, 346) for delivering the driving liquid for a reservoir outlet (148, 348, 448) to the discharge outlet (144, 244a, 244b, 344, 544a, 544b), and a threshold setting device (147, 347); and wherein the threshold setting device (147, 347) sets a threshold thrust level so that the driving liquid is to pass from the reservoir (142, 242, 342) and discharged from the discharge outlet (144, 244a, 244b, 344, 544a, 544b) upon reaching the threshold thrust level during operation.
Abstract:
A self-propelled spinning device having a first and second hemisphere connected together to form a hollow housing. A drive system is disposed in the hollow housing and a plurality of projections extends outward from the first or second hemisphere. The drive system includes an eccentric path of rotation causing the hollow housing to spin about a rotational axis. The projections propel the self-propelled spinning device in a forward direction.
Abstract:
A water play apparatus that includes a tank body where water is collected, a manual pump that allows the water to be circulated through the water play apparatus where the manual pump is located within the tank body, a deck unit which is located within the tank body which the manual pump is mounted upon, a filter unit which is connected to the manual pump by pipe and is located within the tank body underneath the deck unit, and a spout where the water from the manual pump directs water through the filter where water is exerted.
Abstract:
A toy floats on the water surface of a pool. A hydraulic jet propulsion unit is connected to the bottom face of the toy. The propulsion unit includes a rigid tubular member with a straight central portion, a forward right angle elbow and a rear exhaust tube extending at an acute angle to the central portion. The forward elbow is connected by a flexible hose tether to a water source. Thee hose is anchored at an intermediate point to the pool bottom. The rigid tubular member is rotatably mounted in a housing so that it is free to rotate about the long axis of its straight portion. Water forced through the rigid tubular member is ejected from the exhaust tube, forcing the toy forward. When the elbow is vertical, the toy moves straight forward. When the elbow is rotated to the left or right by the pull of the tether, the exhaust tube also rotates to left or right causing the exhaust jet to leave the stern at an angle, turning the toy as it moves forward. This creates automatic random forward propulsion with random left and right turns with various angles for an unusual and appealing continuous unattended operation.
Abstract:
A toy utilizing bubbles in liquid comprises a vessel to be charged with a liquid keeping an air layer at the top and to be sealed, a bubble generating member, and in-liquid movable members moved by bubbles rising in the liquid in the vessel.
Abstract:
An improvement in Cartesian diving toy includes modification of both the diving component of the toy and of the receptacle in which the toy dives in. The diving toy includes an air chamber, a section of which is invaginated within the remaining section of the air chamber. The invaginated section is convoluted and is capable of extending or shortening in respect to pressure changes in the environment outside of the air chamber. A propulsion member is connected to the invaginated section of the air chamber and moves in response to the elongation or the shortening of the invaginated section to propel the toy through a liquid. The receptacle for the toy is improved by locating a pump chamber in association with the lower part of the receptacle allowing for complete purging of the air out of the pump chamber. The receptacle further includes a stopper having a protuberance on its lower side which fits within an upstanding wall on the upper portion of the receptacle. When the stopper is fitted onto the receptacle, the protuberance is forced into the upper surface of the liquid within the receptacle and displaces any gas within the upper periphery of the receptacle rendering the receptacle essentially gas free such that the liquid therein is capable of transmitting pressure differences from the pump directly to the air chamber of the diving component toy.