Abstract:
A cutting tool for cutting flexible building materials, such as, for example, rubber or vinyl baseboards, chair rails and crown molding, at an angle. The cutting tool includes a pair of risers moveably connected near a center of a base with a hinge connection. A blade holder and blade positioned between the risers and moveable from a starting position to a cutting position. The blade can be set to a range of angles relative to the base by rotating the risers and locking the risers in an angle relative to the base.
Abstract:
A microtome method and apparatus includes a microtome blade configured to oscillate in a direction transverse to a direction of advancing a cut, and a first flexure to support and guide the blade. The first flexure is compliant in the transverse direction while being stiff in the cut direction. A second flexure operatively engaged at one end portion with the first flexure, is stiff in the transverse direction while being compliant in the cut direction. The other end portion of the second flexure is rotatably engaged by an eccentric driven by a rotatable actuator, which oscillates the blade in the transverse direction while effectively isolating non-transverse motion from the blade. The second flexure is configured to move independently of any guides or other stationary objects during oscillation.
Abstract:
A microtome method and apparatus includes a microtome blade configured to oscillate in a direction transverse to a direction of advancing a cut, and a first flexure to support and guide the blade. The first flexure is compliant in the transverse direction while being stiff in the cut direction. A second flexure operatively engaged at one end portion with the first flexure, is stiff in the transverse direction while being compliant in the cut direction. The other end portion of the second flexure is rotatably engaged by an eccentric driven by a rotatable actuator, which oscillates the blade in the transverse direction while effectively isolating non-transverse motion from the blade. The second flexure is configured to move independently of any guides or other stationary objects during oscillation.
Abstract:
A roofing sealing system and method is provided. The roofing nail seal is disposed substantially concentrically over a roofing nail. The roofing nail seal includes a body portion with an upper surface and a lower surface. An adhesive is affixed to the lower surface of the body portion for application to a head of the roofing nail.
Abstract:
A sheet hole punching device has a device frame; a plurality of punching members arranged in first and second groups, and arranged linearly on the device frame; a driving rotation shaft; a driving motor reciprocally rotating the driving rotation shaft; a gear mechanism transmitting a rotation of the driving rotation shaft; cam mechanisms converting the rotational movement; and a motor control device. The gearing mechanism includes drive gears disposed on the drive rotational shaft, and receiving gears disposed on the punching members to engage with the drive gears. The cam mechanisms include cam followers and cylindrical cams. The cylindrical cam has a V-shaped groove cam to reciprocate each of the punching members between an upper dead point and a lower dead point. The punching members are rotated in one direction to punch holes in first sheets, and subsequently rotated in a reverse direction to punch holes in following sheets.
Abstract:
A sheet hole-punching device includes a plurality of punch members, a base frame for slidably supporting the punch members in a hole-punching direction and rotationally supporting the punch members, and a drive member having a plurality of cam portions. Each punch member has a leading end with a hole-punching blade. Each cam portion engages each punch member to move the punch member in the hole-punching direction. A plurality of cam devices is also formed in the sheet hole-punching device. Each cam device is disposed between the base frame and each punch member for converting a hole-punching direction movement of the punch member into a rotational movement so as to rotate the punch member while moving in the hole-punching direction.
Abstract:
A cutting unit for a packaging machine comprises a cutting knife which is movably guided in a linear guide, and a drive for driving the movement of the cutting knife. The cutting unit further includes a curved push rod that is provided between the drive and the cutting knife.
Abstract:
A sheet hole-punching device includes a punch member having a leading end with a hole-punching blade, a base frame for movably supporting the punch member in a hole-punching direction, a drive motor for driving the punch member, and a transmission device for transmitting rotational force of the drive motor to the punch member so as to rotate the punch member. The transmission device is disposed between the drive motor and the punch member. A cam device is disposed between the base frame and punch member, and converts a rotational movement of the punch member into a hole-punching direction movement so as to move the punch member in the hole-punching direction while rotating the punch member.
Abstract:
A sheet finishing apparatus includes a punch unit to punch a sheet, and a saddle unit to bundle and to fold the sheets. A position and an inclination angle of a puncher are changed according to a skew amount of the sheet, the puncher is controlled to form punch holes in the sheet at positions symmetric with respect to a folding line, and punching is performed so that an interval between the folding line and the punch hole becomes small at the inside of a bundle of the sheets and becomes large at the front cover side.
Abstract:
An apparatus for punching and binding a stack of papers is disclosed. The apparatus includes a paper clamp and a binding element insertion device that are movable relative to each other. The binding element insertion device is configured to receive and detect binding elements of different sizes. The apparatus also includes a punching mechanism, a controller, and a user interface. The controller controls movement of the paper clamp and the binding element insertion device based on the size of the binding element needed to bind the stack of papers together. The user interface is configured to provide information to a user of the apparatus and to receive input from the user before, during, and after the punching and binding operation.