Abstract:
The invention is a method for producing a heat exchanger assembly including the steps of extruding a plastic and an adhesive from a co-extrusion die into a plurality of tubes spaced from each other with each tube having an adhesive disposed on its exterior surface. A plurality of corrugated air fins are serially fed into the co-extrusion die and spaced from each other by a predetermined space and ejected between adjacent tubes with the corrugations extending transversely between the tubes. The adhesive is then cured to secure the tubes to the air fins. The method proceeds by cutting the tubes at each predetermined space with a guillotine shear to produce a plurality of unified heat exchanger cores. The ends of the tubes of each core are inserted into tube slots in manifolds, and the tubes and manifolds are adhesively secured together to define a heat exchanger assembly.
Abstract:
Multi-port tube structures are fabricated in a process in which a web of metallic material has a pattern of features formed therein by a rotary die forming process carried out on a continuous basis. The web of material is cut into strips which are folded so as to define a closed tubular structure having internal features defining longitudinal fluid flow channels.
Abstract:
A flat tube for use with a heat exchanger. The flat tube including wide sides, narrow sides, an inner insert, a wall that at least partially forms the wide sides and the narrow sides, and the wall is configured to be produced from a punched-out blank. The flat tube further includes an introduction bevel in order to facilitate introduction of the inner insert. The introduction bevel includes at least two bent-down projections at an end of the flat tube. The at least two projections extend over portions of at least one of the wide sides and the narrow sides, and it being possible for the at least two projections to be separated off after the introduction of the inner insert.
Abstract:
A dual base plate heatsink for use in dissipating heat for electronic devices with thermal contact between fins and the base plates and manufactured without welding. Separately extruded fins are connected to both base plates by placing the fins side by side in channels in both base plates. In order to couple the base plates and finds, the base plates are maintained at a constant relative distance and a swaging tool is passed adjacent the fins and between the base plates in a direction parallel to the surface of the base plates. The swaging tool applies pressure to the base plates to thereby swage the base plates against the ends of the fins.
Abstract:
A metal plate for producing a flat tube including a metal body having a joint portion, first and second flat wall forming portions connected by the joint portion, reinforcing wall forming portions projecting from the first and second flat wall forming portions and extending in a longitudinal direction of the first and second flat wall forming portions, and side wall forming portions projecting from opposite side edges of the metal body, respectively. The joint portion has a ridge which makes the joint portion thicker than the first and second flat wall forming portions. The ridge, the reinforcing wall forming portions and the side wall forming portions are projecting in a same direction. The metal body bends into a hairpin shape at boundaries formed between the ridge of the joint portion and the first and second flat wall forming portions.
Abstract:
A method of salvaging a scrap partially completed spine fin coil by initially placing the partially completed coil on a reel. Connecting an end of a straight tube that is helically wrapped with a spine fin strip to an end of the partially completed coil while said partially completed coil is on the reel, rotate the reel after completing the connection until the partially completed spine fin coil is complete.
Abstract:
A method and equipment for making a needle-fin tube having needle-like external fin parts, and internal fin structure formed by a spiraled spring wire which expands to clamp again the tube in the needle-fin tubes. The wire used to form the internal fin is wound along and around a bar which is moved and rotated along a straight line. The bar is moved inside the needle-fin tube from its one end to the other and the wire is released from the bar to attach to the internal surface of the needle-fin tube under spring force.
Abstract:
A dual base plate heatsink for use in dissipating heat for electronic devices with thermal contact between fins and the base plates and manufactured without welding. Separately extruded fins are connected to both base plates by placing the fins side by side in channels in both base plates. In order to couple the base plates and the fins, the base plates are maintained at a constant relative distance and a swaging tool is passed adjacent the fins and between the base plates in a direction parallel to the surface of the base plates. The swaging tool applies pressure to the base plates to thereby swage the base plates against the ends of the fins.
Abstract:
A metal plate comprises two flat wall forming portions 89, 90 connected together by a joint portion 88, a plurality of reinforcing wall forming portions 83, 84 upwardly projecting from each of the wall forming portions 89, 90 integrally therewith, and a side wall forming portion 81, 82 formed at each of opposite side edges of the plate and upwardly projecting therefrom integrally therewith. A projection 85 is formed on the upper end of the reinforcing wall forming portion 83 on the flat wall portion 89, and a recess 86 for the projection 85 to fit in is formed in the upper end of the wall forming portion 84 to be butted against the portion 83 and provided on the other flat wall portion 90. The metal plate satisfies the relationships of: A>a, A/a≦1.5, B/b≦1.5, C/c≦1.5, and D/d/≦1.5 wherein A is the cross sectional area of the projection 85, B is the height of the projection 85, C is the maximum width of the projection 85, D is the width of upper end of the projection 85, a is the cross sectional area of the recess 86, b is the depth of the recess 86, c is the maximum width of the recess 86, and d is the width of an opening of the recess 86.
Abstract translation:金属板包括通过接合部分88连接在一起的两个平壁形成部分89,90,与其形成一体的壁形成部分89,90向上突出的多个加强壁形成部分83,84,以及形成 部分81,82形成在板的相对侧边缘的每一侧并与其一体向上突出。 突出部85形成在平壁部89上的加强壁形成部83的上端,并且在壁形成部84的上端形成用于嵌合的突起85的凹部86,以抵接 该部分83设置在另一平坦壁部分90上。 A> A,A / A <= 1.5,B / b <= 1.5,C / c <= 1.5,D / d / <= 1.5 <?in-line-formula description =“In-line Formulas”end =“tail”?>其中A是突起85的横截面积,B是 突起85的高度,C是突起85的最大宽度,D是突起85的上端的宽度,a是凹部86的横截面积,b是凹部86的深度,c是 凹槽86的最大宽度,d是凹部86的开口的宽度。
Abstract:
A heat pipe includes a shell containing a working media therein, a first capillary wick, a second capillary wick and a vapor channel enclosed by the first and second capillary wicks. The first capillary wick is positioned on an inner side of the shell. A whole length of the second capillary wick is longitudinally joined with the first capillary wick. The first capillary wick consists of sintered metallic or ceramic powder. The second capillary wick is a mesh-type capillary wick.