Abstract:
A hinge assembly (26) includes a first hinge shoulder (262), a second hinge shoulder (264), a hinge sleeve positioned (266) between the first hinge shoulder and the second hinge shoulder, a hinge (268) pivotably connecting the first hinge shoulder to the hinge sleeve, and a ceramic bushing (269) pivotably connecting the second hinge shoulder to the hinge sleeve.
Abstract:
A collapsible building module including: a floor panel; a plurality of wall panels, each having an upper end and a lower end and being connected to said floor panel at or adjacent their lower ends for pivoting movement relative to said floor panel about respective pivot axes at or adjacent their lower ends between an erected position in which they stand up from said floor panel and a stowed position in which they rest on said floor panel or on top of one another; a roof panel operatively connected to one of said wall panels at or adjacent its upper end for pivoting movement relative thereto about a pivot axis adjacent said upper end; and securing means for securing selected adjacent panels together in the erected position.
Abstract:
A hinge assembly (26) includes a first hinge shoulder (262), a second hinge shoulder (264), a hinge sleeve positioned (266) between the first hinge shoulder and the second hinge shoulder, a hinge (268) pivotably connecting the first hinge shoulder to the hinge sleeve, and a ceramic bushing (269) pivotably connecting the second hinge shoulder to the hinge sleeve.
Abstract:
A top hinge is provided for a refrigerator cabinet door. A hinge body is formed of plastic having a top surface and a bottom surface. A hinge pin extends substantially perpendicularly from the bottom surface of the hinge body. One or more points of attachment are formed on the hinge body. An axis of twist passes through a center of the hinge pin and an effective center of attachment. At least a first rib and a second rib extend from the bottom surface of the hinge body. The ribs extend along a length of the bottom surface at an oblique angle relative to the axis of twist and diverge from each other by an angle of at least about 60 degrees.
Abstract:
A hinge for an electronic device, such as a notebook computer, a personal digital assistant, a cellular telephone, a portable compact disc player and the like, includes a body member and at least one contact provided on the body member. Structure is provided for electrically connecting each contact to a first portion of the electronic device. Structure is also provided for connecting each contact to a second portion of the electronic device. The hinge can be repeatedly used without wear or rubbing action because the ends of the contacts always remain connected to the electrical components of the upper and lower portions of the electronic device. If damaged, only the hinge needs to be replaced and the connections to the electronic device reinstated.
Abstract:
An articulating window assembly is adapted for use with a support structure. The assembly includes a windowpane with an inner surface. A hinge is adjacent to the inner surface. The hinge includes a cylindrical member having a pivot axis and a stud member attached to the cylindrical member. A polymeric member surrounding at least a portion of the hinge member so as to permit, the hinge member to articulate about the pivot axis.
Abstract:
A conductive hinge is made of a superelastic shape memory alloy such as nitinol (NiTi) having a large elastic strain limit for enabling the hinge to bend around a small radius during stowage and flexible return to a trained rigid hinge position. The hinge is conductive enabling use of the hinge as a conductor for routing power through multiple solar cell panels interconnected by the hinges forming a hinged solar cell array that is deployed when the hinges are released from the bent stowed configuration to the rigid deployed configuration when the hinges further function as latches to lock the panels in place.
Abstract:
In a frictional hinge device a support block 20 is molded in a synthetic resin around the metallic shaft 10 so that the support block 20 is rotatably supported by the metallic shaft 10. The support block 20 is held at any angles by a surface friction resistance between the support block 20 and the metallic shaft 10. The synthetic resin has a modulus of bending elasticity, a changing rate of which is up to 30% at an operating temperature ranging from −20 to 80° C. The support block 20 tightly engages with the metallic shaft 10 due to a residual stress appeared between the support block 20 and the metallic shaft 10 when cooling the synthetic resin to shrink. Due to the smaller changing rate of the modulus of bending elasticity, the surface friction resistance becomes stable between the support block 20 and the metallic shaft 10 under normal ambient temperature with the least amount of friction.
Abstract:
A hinge assembly for pivotally interconnecting a door to a trailer body is disclosed. The hinge assembly includes a hinge plate having a mounting portion and a hinge portion. The mounting portion of the hinge plate is configured to permit attachment to the door, while the hinge portion of the hinge plate defines an elongated closed passage opening at opposite ends thereof. Bearing structure is non-rotatably accommodated within the passage for forming a bearing connection between the hinge plate and a pivot member endwise extending through the hinge portion of the hinge plate. The bearing structure includes a cap formed integral therewith and extending from opposite ends of the passage.
Abstract:
The implementation of smart materials (shape-memory alloys (SMA) or piezoceramics) as integral actuating devices for single degree-of-freedom (DOF) hinges, thereby providing mobility as well as actuation to a wide range of mechanisms used in industrial, automotive and aircraft systems. A single DOF hinge is used in which smart materials are used both for actuation and for performance enhancement. The hinge consists of a tang and clevis, two conical inserts, one push block, one bolt and nut, and two washers. Assembly takes place by first putting the push block inside the clevis and putting the tang in place, then inserting the cones, inserting a bolt in the cones and finally tightening the bolt in this arrangement together with the nut to a specified torque. The amount of torque applied is related to the amount of preload in the undisturbed configuration of the hinge and the expansion of the conical inserts required to initiate rotation of the hinge. The smart material of the conical inserts is used to provide rotational mobility to the hinge. Applying a current causes the conical inserts, which are fabricated out of a smart material, to expand, thereby creating a gap between the conical inserts and the clevis. The existence of the free-play caused by the gap allows the clevis to rotate about the hinge's rotational axis. Once the hinge rotation is complete, the free-play in the hinge is eliminated by restoring the smart material of the conical inserts to the original (undisturbed) configuration, thereby pre-loading the hinge components.