Abstract:
The present invention relates to a main electronic device for communicating within a network comprising an interface for enabling communication within the network and a controller for sending polling messages via the network to logical addresses via said interface in order to request information from at least one further electronic device.The present invention further relates to a method for operating a main electronic device for communicating within a network.
Abstract:
A display apparatus, equipped with a common input terminal inputting different video signals, can discriminate the type of an input video signal entered from the common input terminal. The display apparatus includes the common input terminal inputting different video signals. A synchronizing signal separation unit separates a synchronizing signal from a video signal entered from the common input terminal. A frequency measurement unit measures a frequency of the synchronizing signal. An input signal discrimination unit discriminates the video signal entered from the common input terminal based on a type of the synchronizing signal separated by the synchronizing signal separation unit and a measurement result obtained by the frequency measurement unit.
Abstract:
An image processing apparatus acquires a time interval which is set in a display apparatus and at which the display screen is updated, determines a profile used for a color correction process based on the acquired time interval, and performs the color correction process using the determined profile to an input video signal.
Abstract:
The present invention relates to a main electronic device for communicating within a network comprising an interface for enabling communication within the network and a controller for sending polling messages via the network to logical addresses via said interface in order to request information from at least one further electronic device.The present invention further relates to a method for operating a main electronic device for communicating within a network.
Abstract:
A receiving apparatus includes a first receiving unit that receives signaling information and a first signal comprising reference data through a radio frequency broadcast network; a control unit that detects a plurality of additional data source information from the signaling information; a second receiving unit that accesses an internet protocol communication network, and receives a second signal comprising additional data from a source apparatus corresponding to each of the plurality of additional data source information; a storage unit that stores the reference data contained in the first signal and the additional data contained in the second signal; and an output unit that processes, synchronizes and outputs each of the reference data and additional data.
Abstract:
A display apparatus, equipped with a common input terminal inputting different video signals, can discriminate the type of an input video signal entered from the common input terminal. The display apparatus includes the common input terminal inputting different video signals. A synchronizing signal separation unit separates a synchronizing signal from a video signal entered from the common input terminal. A frequency measurement unit measures a frequency of the synchronizing signal. An input signal discrimination unit discriminates the video signal entered from the common input terminal based on a type of the synchronizing signal separated by the synchronizing signal separation unit and a measurement result obtained by the frequency measurement unit.
Abstract:
The present invention relates to a main electronic device for communicating within a network comprising an interface for enabling communication within the network and a controller for sending polling messages via the network to logical addresses via said interface in order to request information from at least one further electronic device. The present invention further relates to a method for operating a main electronic device for communicating within a network.
Abstract:
A display apparatus, equipped with a common input terminal inputting different video signals, can discriminate the type of an input video signal entered from the common input terminal. The display apparatus includes an input terminal inputting different video signals. A synchronizing signal separation unit separates a synchronizing signal from a video signal entered from the input terminal. A frequency measurement unit measures a frequency of the synchronizing signal. An input signal discrimination unit discriminates the video signal entered from the input terminal based on a type of the synchronizing signal separated by the synchronizing signal separation unit and a measurement result obtained by the frequency measurement unit.
Abstract:
A system and method for synchronizing sub-carriers in a signal processing system. Various aspects of the present invention may comprise method steps and structure that receive a sampled signal. Various aspects may produce a synchronization signal based on the sampled signal. Various aspects may generate and store a cropped version of the received sampled signal. Various aspects may read a cropped sampled signal from memory that corresponds to the received sampled signal. Various aspects may generate a restored sampled signal by adding samples to the cropped sampled signal read from memory. Various aspects may, based on the synchronization signal, output the restored sampled signal coarsely synchronized to the received sampled signal. Various aspects may determine a phase difference between the output restored sampled signal and the output received sub-carrier. Various aspects may adjust the phase of the restored sampled signal in response to the determined phase difference.
Abstract:
A system and method for synchronizing sub-carriers in a signal processing system. Various aspects of the present invention may comprise method steps and structure that receive a sampled signal. Various aspects may produce a synchronization signal based on the sampled signal. Various aspects may generate and store a cropped version of the received sampled signal. Various aspects may read a cropped sampled signal from memory that corresponds to the received sampled signal. Various aspects may generate a restored sampled signal by adding samples to the cropped sampled signal read from memory. Various aspects may, based on the synchronization signal, output the restored sampled signal coarsely synchronized to the received sampled signal. Various aspects may determine a phase difference between the output restored sampled signal and the output received sub-carrier. Various aspects may adjust the phase of the restored sampled signal in response to the determined phase difference.