Abstract:
A full-zone optical image addressing apparatus, including an addressing device, an image extraction converter, a comparator, an AND gate and a counter. The addressing device is located at the enclosure of the scanner and includes a plurality of geometric patterns. Each of the geometric patterns includes a plurality of rows of pixels. While receiving an exposure signal, the image extraction converter extracts one row of pixels from the addressing device, such that a series of analog signals is obtained and output to the comparator. The comparator then compares the series of analog signals to an analog critical voltage to output a series of analog comparison signals to the AND gate. The AND gate synchronously processes the series of analog comparison signals and a pixel rate clock to output the pixel data corresponding to the extracted row of pixels to the counter. After receiving the synchronously processed pixel value from the AND gate, the counter calculates and outputs the extracted row of pixels, including the amount of pixels and the geometric patterns in the row of pixels.
Abstract:
A full-zone optical image addressing apparatus, including an addressing device, an image extraction converter, a comparator, an AND gate and a counter. The addressing device is located at the enclosure of the scanner and includes a plurality of geometric patterns. Each of the geometric patterns includes a plurality of rows of pixels. While receiving an exposure signal, the image extraction converter extracts one row of pixels from the addressing device, such that a series of analog signals is obtained and output to the comparator. The comparator then compares the series of analog signals to an analog critical voltage to output a series of analog comparison signals to the AND gate. The AND gate synchronously processes the series of analog comparison signals and a pixel rate clock to output the pixel data corresponding to the extracted row of pixels to the counter. After receiving the synchronously processed pixel value from the AND gate, the counter calculates and outputs the extracted row of pixels, including the amount of pixels and the geometric patterns in the row of pixels.
Abstract:
An electronic device controller includes an image sensor controller that controls an image sensor having an effective pixel region and a dummy pixel region, and a servo controller that performs servo control on a drive device that drives a carriage on which the image sensor is mounted. The servo controller performs the servo control based on servo control information (for speed control, initial position detection) read by some or all of the dummy pixel region of the image sensor. Alternatively, the servo control may be performed based on servo control information read by one or more separate sensors mounted on the carriage with the image sensor. Moreover, speed servo control may be performed according to speed control ranges based on servo control information for each speed range.
Abstract:
An image reading apparatus includes a reading unit, a control unit, and a pattern region. The reading unit moves a linear reading range, which is provided in a main scanning direction, in a sub-scanning direction that intersects with the main scanning direction while reading an object that faces the reading range, and generates image data on the basis of a read result. The control unit controls the reading unit. The pattern region includes a predetermined pattern that defines a reference position for specifying a reading position that is read by the reading unit. The predetermined pattern has a characteristic portion that specifies a schematic position of the predetermined pattern in the sub-scanning direction. The control unit includes a first image acquisition unit, a pattern searching unit, a second image acquisition unit, a characteristic portion searching unit, a first reprocessing instruction unit, and a second reprocessing instruction unit.
Abstract:
An electronic device includes a carriage on which an image sensor is mounted, a motor that drives the carriage, and servo-control-containing printed matter provided in one or more detection areas of the image sensor or one or more independently provided optical sensors. The servo control information is used for speed control and initial position detection of the carriage. A servo controller performs the servo control on the motor via a motor driver based on the read servo control information. The printed matter is provided on a rear or underside surface of a support structure in areas irradiated by a light source for the image sensor. Printed matter for speed control may be provided in one area and printed matter for initial position detection in another. Servo control information on the printed matter may be read using a dummy pixel region of the image sensor.
Abstract:
A full-zone optical image addressing apparatus, including an addressing device, an image extraction converter, a comparator, an AND gate and a counter. The addressing device is located at the enclosure of the scanner and includes a plurality of geometric patterns. Each of the geometric patterns includes a plurality of rows of pixels. While receiving an exposure signal, the image extraction converter extracts one row of pixels from the addressing device, such that a series of analog signals is obtained and output to the comparator. The comparator then compares the series of analog signals to an analog critical voltage to output a series of analog comparison signals to the AND gate. The AND gate synchronously processes the series of analog comparison signals and a pixel rate clock to output the pixel data corresponding to the extracted row of pixels to the counter. After receiving the synchronously processed pixel value from the AND gate, the counter calculates and outputs the extracted row of pixels, including the amount of pixels and the geometric patterns in the row of pixels.
Abstract:
An electronic device controller includes an image sensor controller that controls an image sensor having an effective pixel region and a dummy pixel region, and a servo controller that performs servo control on a drive device that drives a carriage on which the image sensor is mounted. The servo controller performs the servo control based on servo control information (for speed control, initial position detection) read by some or all of the dummy pixel region of the image sensor. Alternatively, the servo control may be performed based on servo control information read by one or more separate sensors mounted on the carriage with the image sensor. Moreover, speed servo control may be performed according to speed control ranges based on servo control information for each speed range.
Abstract:
A scanning apparatus includes a stage glass on which a document is loaded, a scanning head which reciprocates between a home position of the stage glass and a finish position opposite to the home position to read the document and generate image data, a position detection part disposed in or on the stage glass along a moving direction of the scanning head, a head position sensing part disposed in the scanning head which senses the position detection part to sense the position of the scanning head when a scanning signal is inputted, and a controlling part to control the scanning head so that the scanning head moves to the home position at a faster speed than a predetermined reference speed if the scanning head is distanced farther from the home position than a predetermined distance. Thus, the scanning apparatus, a driving method therefor and an image forming apparatus having the same control a speed with which a scanning head moves to a home position according to the position of the scanning head.
Abstract:
An electronic device includes a carriage on which an image sensor is mounted, a motor that drives the carriage, and servo-control-containing printed matter provided in one or more detection areas of the image sensor or one or more independently provided optical sensors. The servo control information is used for speed control and initial position detection of the carriage. A servo controller performs the servo control on the motor via a motor driver based on the read servo control information. The printed matter is provided on a rear or underside surface of a support structure in areas irradiated by a light source for the image sensor. Printed matter for speed control may be provided in one area and printed matter for initial position detection in another. Servo control information on the printed matter may be read using a dummy pixel region of the image sensor.
Abstract:
A recording head (16) is operated to form a regular pattern of image swaths on a recording media (17). The regular pattern of image features comprises a first set of image features (60A) that is formed with an imaging parameter set to a first predetermined value and a second set of image features (60B) is formed with an imaging parameter set to a second predetermined value, different from the first predetermined value. Image features in the first set and the second set are arranged on the recording media with a sub-scan spatial frequency equal to a non-integer multiple of a sub-scan spatial frequency of the image swaths. A scanner (40) generates data (47) of the scanned pattern, wherein a first integer multiple of a sampling spatial frequency employed by the scanner is equal to a second integer multiple of the sub-scan spatial frequency of the first set and the second set of image features. The data is analyzed to determine a quantified value representative of banding between the first set of and the second set of image features are adjusted.