Abstract:
Disclosed are a sequence report method and a sequence report device for reducing a signaling amount for reporting a Zadoff-Chu sequence or a GCL sequence allocated for a cell. Indexes starting at 1 are correlated to different ZC sequences and are allocated for cells so that the indexes are continuous. When such ZC sequences are reported from BS to UE, a start index indicating the start of the continuous indexes is combined with the number of allocated sequences and they are reported as allocation sequence information by a report channel. The UE and the BS share the correlation between the ZC sequences and the indexes and the UE identifies a usable sequence number according to the correlation and the allocation sequence information reported from the BS.
Abstract:
Providing for secondary synchronization encoding utilizing a primary synchronization channel (P-SCH)-related scrambling code is described herein. Scrambled secondary synchronization codes (SSCs) can be assigned to multiple base stations of a radio access network (RAN). By way of example, PSC-based scrambling codes can be created from a plurality of M-sequences generated from a common polynomial expression. Further, an SSC codebook is provided that selects sequence pairs of a sequence matrix for generating SSCs. Selection can be based on transmission characteristics of resulting SSCs, providing reduced interference in planned, semi-planned and/or unplanned mobile deployments.
Abstract:
A base station and method of synchronizing with a user equipment (UE) in a cell of the base station. The base station signals to the UE an indication relating to a subset of preambles chosen for synchronization with the cell from a set of preambles derivable from one or more given root sequences. The subset of preambles is chosen to provide an increased cell radius compared to the cell radius achievable if the specified full set of preambles for random access procedures was generated from the given root sequences using a given cyclic shift value.
Abstract:
A method is provided for detection and synchronization for a multistation wireless communication system (WiFi) implementing a layer, termed the MAC or Medium Access Control layer, provided for implementing a multiple access protocol and a physical layer, termed the PHY or Physical Layer, provided for achieving synchronization and detection functions, the MAC layer transmitting commands to the PHY layer so as to carry out the multiple access protocol and the PHY layer generating in response at least one waveform carrying synchronization signals and detection signals, the MAC layer implements an orthogonal or quasi-orthogonal cyclic signal to construct the at least one waveform.
Abstract:
Data is accessed from a network via a wireless communication link. A determination is made as to whether payload data has been received from a subscriber's terminal. If so, then a request is sent for a first set of traffic channels, and the payload data is transmitted over the first set of traffic channels.
Abstract:
Providing for secondary synchronization encoding utilizing a primary synchronization channel (P-SCH)-related scrambling code is described herein. Scrambled secondary synchronization codes (SSCs) can be assigned to multiple base stations of a radio access network (RAN). By way of example, PSC-based scrambling codes can be created from a plurality of M-sequences generated from a common polynomial expression. Further, an SSC codebook is provided that selects sequence pairs of a sequence matrix for generating SSCs. Selection can be based on transmission characteristics of resulting SSCs, providing reduced interference in planned, semi-planned and/or unplanned mobile deployments.
Abstract:
Disclosed are a sequence report method and a sequence report device for reducing a signaling amount for reporting a Zadoff-Chu sequence or a GCL sequence allocated for a cell. Indexes starting at 1 are correlated to different ZC sequences and are allocated for cells so that the indexes are continuous. When such ZC sequences are reported from BS to UE, a start index indicating the start of the continuous indexes is combined with the number of allocated sequences and they are reported as allocation sequence information by a report channel. The UE and the BS share the correlation between the ZC sequences and the indexes and the UE identifies a usable sequence number according to the correlation and the allocation sequence information reported from the BS.
Abstract:
Data is accessed from a network via a wireless communication link. A determination is made as to whether payload data has been received from a subscriber's terminal. If so, then a request is sent for a first set of traffic channels, and the payload data is transmitted over the first set of traffic channels.
Abstract:
Network node and method therein for assignment of Physical Cell Identities (PCIs) to Radio Base Stations (RBSs) in a wireless communication network. The method includes determining a most densely located RBS, based on the distances from each RBS to a certain number of other RBSs of the plurality of RBSs. The method further includes, for each RBS, i, for which a PCI is to be assigned: assigning a Secondary Synchronization Signal (SSS) to the RBSi from a set of SSSs, based on a distance from the RBSi to another RBS in the communication network associated with the same SSS, and a number of tiers between the RBSi and, at least, the other RBS. Further, a Primary Synchronization Signal (PSS) is assigned to the RBSi, based on the number of cells associated with the RBSi; and a PCI is assigned to the RBSi, based on the SSS and the PSS.
Abstract:
Provided are a method and device for searching a cell, and the method comprises: timeslot synchronization is performed; a primary scrambling code group is identified and a frame synchronization is performed according to hashed values of code numbers of secondary synchronization codes (SSCs) in any several consecutive timeslots; and a primary scrambling code is obtained in the primary scrambling code group according to the primary scrambling code group, so as to complete cell searching.