摘要:
Methodologies and an apparatus for measuring setup and hold times of fabricated semiconductor devices are provided. Embodiments include: providing a first digital frequency divider having an input and an output, the input of the first digital frequency divider receiving a first signal indicating an oscillating signal with a first delay; providing a second digital frequency divider having an input and output, the input of the second digital frequency divider receiving a second signal indicating the oscillating signal with a second delay; and providing a flip-flop having an input and an output, wherein the input of the flip-flop is coupled to the output of the second digital frequency divider and a data signal and clock signal for measuring a set-up time or hold time of a device under test are generated.
摘要:
A counter includes a buffer unit and a ripple counter. The buffer unit generates at least one least significant signal of a count by buffering at least one clock signal until a termination time point. The ripple counter generates at least one most significant signal of the count by sequentially toggling in response to at least one of the least significant signal. The counter performs multiple data rate counting with enhance operation speed and reduced power consumption.
摘要:
A system and method for signal mixing using high-order harmonics of a local oscillation (LO) signal. In a radio frequency (RF) system, the input RF signal is converted to a lower frequency signal such as an intermediate frequency (IF) signal or a baseband signal for further processing. A voltage controlled oscillator (VCO) is often used to generate a VCO signal which is then divided down to provide the needed LO signals for down conversion. The present invention discloses a system and method for generating a composite harmonic signal based on a linear combination of divided down LO signals with specific phase shifts. Consequently a VCO signal with lower frequency can be used to conserve power. The composite harmonic signal is mixed with the input RF signal to generate a series of mixed signal including one associated with a high-order harmonic of the divided down LO signal. Systems to implement the high order harmonic mixing is also disclosed which comprises a plurality of mixer sections with configurable weighting factors. A combination circuit is used to combine the weighted mixed signals which contains a term corresponding the mixing of the input RF signal with a high order LO harmonic.
摘要:
A system and method of clock generation to provide divided-by-2 clocks with prescribed phase shifts are disclosed. In a communication system with high-order harmonic mixing, the system requires LO signals with a set of prescribed phase shifts, such as 0°, 45°, 90°, and 135°, or 0°, 60° and 120°. Often, the clock generation system involves a divide-by-2 divider to derive the clock signals with the prescribed phase shifts. In a conventional implementation of the divide-by-2 divider, the system is subject to phase uncertainty in the output signal. Accordingly, a system comprises multiple latch pairs and respective differential clocks are used to generate the clocks with the set of correct prescribed phase shifts.
摘要:
In a method for dividing a frequency of a clock signal, a first frequency divided signal is generated based on a clock signal. Rising edges in the first frequency divided signal are detected. Alternatively, falling edges in the first frequency divided signal are detected. An edge detection signal that includes a pulse for each detected edge is generated. A second frequency divided signal is generated based on the edge detection signal.
摘要:
When the input write data is a value of a value greater than the existing data of the memory array 100, the semiconductor memory device enables writing of input write data to the memory array 100. In specific terms, the increment controller 150 reads the existing data from the memory array 100, and compares it with the write data latched to the 8-bit latch register 170. When the value of the write data is a value greater than the existing data, the increment controller 150 outputs the write enable signal WEN1 to the write/read controller 140, and executes writing of the write data latched to the 8-bit latch register 170 to the memory array 100.
摘要:
When the input write data is a value of a value greater than the existing data of the memory array 100, the semiconductor memory device enables writing of input write data to the memory array 100. In specific terms, the increment controller 150 reads the existing data from the memory array 100, and compares it with the write data latched to the 8-bit latch register 170. When the value of the write data is a value greater than the existing data, the increment controller 150 outputs the write enable signal WEN1 to the write/read controller 140, and executes writing of the write data latched to the 8-bit latch register 170 to the memory array 100.
摘要:
A shift register includes a first transistor connected between an output terminal and a first clock terminal, a second transistor connected between the output terminal and a first power terminal, and an inverter in which a first node to which the gate of the first transistor is connected serves as an input node and a second node to which the gate of the second transistor is connected serves as an output node. The inverter has third and fourth transistors connected in series between the second node and a first power terminal, both having their gates connected to the first node, a fifth transistor connected between the second node and a third power terminal having its gate connected to the third power terminal, and a sixth transistor connected between a fourth power terminal and a third node serving as a connection node between the third and fourth transistors. The sixth transistor has its gate connected to the second node.
摘要:
A very high speed counter system of operating at frequencies of up to around 800 MHz provides timing measurements with accuracies on the order of (1/f) seconds where f is the frequency of operation. The least significant bit of the counter operates at the given frequency of a first clock signal while the other higher order bits operate at a second clock signal where the second clock signal is one-half the frequency of the first clock signal and is inverted. Carry lookahead circuits connected between stages of the second counter operate in conjunction with the clocking scheme to produce a high speed and accurate counter.
摘要:
A binary counter or binary-coded-arithmetic counter uses local look-ahead to speed up ripple carry propagation. A succession of counter stages therein can be identified by respective consecutive ordinal numbers assigned in accordance with the order of carry propagation. Each counter stage receives a respective carry input and supplies a respective output signal, and each counter stage identified by even number supplies a respective complemented output signal. Each counter stage identified by odd number has a respective carry generation circuit for supplying a respective carry output signal which includes a NAND gate responsive to carry input to that counter stage and responsive to output signal from that counter stage, carry input for the next counter stage being supplied in response to the NAND gate response. Each counter stage identified by even number has a respective carry generation circuit for supplying a respective carry output signal which includes a NOR gate responsive to the NAND gate response used for determining carry input for that counter stage and responsive to complemented output signal from that counter stage, carry input for the next counter stage being supplied in response to said NOR gate response.