Abstract:
An electric motor controller having a front face and a rear face, the front face carrying a plurality of AC output couplings and the controller carrying a converter configured to convert a received DC supply into an output AC supply for controlling an electric motor, the AC output couplings being disposed symmetrically about an axis of symmetry of the controller on the front face of the controller. Also described is an apparatus comprising: a DC series motor; and a first current supply configured to supply a first current to an armature of the DC series motor; a second current supply configured to supply a second current to a field winding of the DC series motor; and a controller configured to control the first current supply to supply the first current based on a required torque output for the motor, and to control the second current supply to supply the second current based on the first current.
Abstract:
An electric motor controller having a front face and a rear face, the front face carrying a plurality of AC output couplings and the controller carrying a converter configured to convert a received DC supply into an output AC supply for controlling an electric motor, the AC output couplings being disposed symmetrically about an axis of symmetry of the controller on the front face of the controller. Also described is an apparatus comprising: a DC series motor; and a first current supply configured to supply a first current to an armature of the DC series motor; a second current supply configured to supply a second current to a field winding of the DC series motor; and a controller configured to control the first current supply to supply the first current based on a required torque output for the motor, and to control the second current supply to supply the second current based on the first current.
Abstract:
The invention relates to an energy storage device (2) comprising at least one first energy supply branch (2a, 2b, 2c) which is designed to supply a separately excited electrical machine (1) with energy via a first connection (3a, 3b, 3c), and a second energy supply branch (2d) which is connected in parallel to the at least one first energy supply branch (2a, 2b, 2c) and which is designed to supply a field winding (11) of the separately excited electrical machine (1) with current via a second connection (3d), the at least one first energy supply branch (2a, 2b, 2c) and the second energy supply branch (2d) being connected to the field winding (11) by means of third connections (4a, 4b, 4c; 4d) via a common reference bus (9).
Abstract:
A wind power facility includes an activation circuit for a speed-limited and voltage-source-protective operation of a pitch-drive series-wound motor at generator torques. The activation circuit can comprise a pitch-drive series-wound motor, in which armature winding and exciter winding are connectable separately from one another, a load resistor RII, which is switched essentially in series to the exciter winding and parallel to the armature winding, and a voltage source, such as a battery or accumulator. A first terminal contact of the armature winding can be connected via a first power converter component to a first terminal contact of the exciter winding and a first terminal contact of the load resistor, and the first terminal contact of the armature winding can be connected via a second power converter component to a second terminal contact of the exciter winding. The first power converter component can transmit in motor operation and block in generator operation, and the second power converter component can transmits in generator operation and block in motor operation.
Abstract:
The present invention relates to an activation circuit and a method for operating such an activation circuit for a DC motor (04) having electrically actuated stopping brake (07), in particular for adjusting a rotor blade of a wind or water power facility. The activation circuit comprises an emergency operation supply unit (03) and a three-phase bridge inverter (01). The emergency operation supply unit (03) is connected so it is disconnectable via an emergency operation network switching element (12) to the intermediate circuit (16, 17) of the three-phase bridge inverter (01), the DC motor (04) is connected via an emergency operation motor changeover element (13) either to the three-phase bridge inverter (01) or to the emergency operation supply unit (03), and the stopping brake (07) is connected via an emergency operation brake changeover element (14) either to the three-phase bridge inverter (01) or to the emergency operation supply unit (03). With the aid of the activation circuit, an extremely reasonably available three-phase current component, a three-phase bridge inverter, may be used as a central component of a failsafe activation circuit of rotor adjustment devices, this reduces the costs and component and cabling outlay for such a circuit and allows high circuit-technology flexibility. The activation circuit allows monitored operation both in normal and also in various emergency operation types.
Abstract:
A motor driving control device includes a motor, a switch unit that controls driving of the motor, a current detection resistor that outputs a detection voltage indicating a current of the motor, a comparator that compares the detection voltage with a target current value, an on signal generating unit that generates an on signal, a polarity of which is changed for each interval of predetermined time, and a control unit that has the comparator, a holding circuit receiving the on signal to change a circuit state. When a change in polarity of the on signal is detected, the holding circuit holds the circuit state such that the switch unit is turned on and a current is supplied to the motor. When the comparator detects that the current of the motor is increased to the target current value, the holding circuit holds the circuit state such that the switch unit is turned off.
Abstract:
A control system for energizing a direct current (DC) motor with alternating current (AC) power includes a first voltage sensor for a peak voltage of AC power; a second voltage sensor for a counter electromotive force (EMF) of the motor; a current sensor for an armature current of the motor; a digital processor having a first current controller responding to sensed armature current and a current reference, a cooperating second current controller responding to sensed peak voltage, sensed counter EMF and the current reference signal, and a gating circuit responding to the controllers; and a thyristor converter circuit sequentially gating portions of half cycles of AC power to the motor in response to firing signals from the gating circuit. The controllers may control a gate angle of the firing signals, the control system may include a third voltage sensor for a terminal voltage of the motor, and the armature current may have discontinuous and continuous waveforms. The processor may calculate a start of continuous current value which is a function of a calculated peak voltage of the AC power and a calculated counter EMF of the motor. The calculated counter EMF is sensed when an absolute value of sensed armature current is less than the start of continuous current value but, otherwise, the calculated counter EMF is related to motor terminal voltage. The calculated peak voltage of AC power is an average of an absolute value of a peak positive sensed voltage and an absolute value of a peak negative voltage under calculated discontinuous current conditions but, otherwise, the calculated peak voltage is the average plus a calculated commutation notch line voltage loss. The calculated commutation notch line voltage loss may be a function of the gate angle, the sensed armature current and the calculated peak voltage. The gate angle may be a sum of gate angles from the two controllers.
Abstract:
The invention disclosed is a control system for controlling a pair of separately excited motors arranged such that each motor of the pair drives a separate wheel on a common axle of an electrically powered vehicle. The control system continuously and individually adjusts the field excitation of the drive motors so that torque and speed of the separate wheels are apportioned to the wheels as a function of the steering angle of the vehicle. Preferably, the control system includes an armature current regulating loop for regulating current to the series connected armatures of the dual motors in accordance with an operator command signal; a field regulator for regulating the two separate motor field windings in proportional to the armature current; a sensor to continuously detect the steering angle of the vehicle; circuitry for providing inside and outside wheel signals, each as a function of the steering angle such that an increase or decrease in the value of one signal produces the opposite response in the other signal and such that the two signals always sum to a constant value; and circuitry for adjusting the two field windings in accordance with the inside and outside wheel signals.
Abstract:
A torque command proportional to accelerator position is provided at low speeds with a transition to a torque command dependent on accelerator pedal position that varies to provide constant horsepower at high speeds. The transition occurs between constant torque command and torque command providing constant power at decreasingly lower speeds with decreasing accelerator pedal position. The torque command provides the control input to a traction motor for an electric vehicle.
Abstract:
A power control system for a DC electric motor includes a control power regulating means which selectively connects either the armature of the motor, the field winding of the motor or both in a series current path with a DC power source permits operation of the motor in either an armature current or field current control mode using a single regulating circuit. In the field current control mode a contactor connects the armature of the motor directly across the power source and the regulating circuit controls the field current to regulate torque developed by the motor. The armature circuit and field circuit are interconnected by a diode which permits electronic switching between armature current control and field current control modes of operation.