摘要:
A vehicle powertrain includes an IGBT that conducts current between a supply and load. The vehicle powertrain also includes a controller that applies voltage to a gate of the IGBT at a first level for a first duration that depends on a capacitance of the gate, and increases the voltage over a second duration based on a rate of change of the current falling below a threshold defined by a supply voltage for the load.
摘要:
A low voltage ride-through (LVRT) apparatus capable of flux compensation and peak current management is disclosed, which comprises a converter; a space vector modulator, connected to the converter; a current controller, connected to the space vector modulator; an grid realization system, connected to the current controller; a flux offset compensator, connected to the current controller; a filter, connected to the converter; and a transformer, connected to the filter. In this manner, the LVRT apparatus may be connected to an associated grid side (commercial power), and thus applied onto a direct current (DC) to alternating current (AC) system for renewable energy source. When the grid side is failed, a flux offset on a transformer may be eliminated, to avoid an inrush current from rising after a recovery of failure exclude voltage, so that the requirement of the grid operation may be satisfied.
摘要:
A vehicle powertrain includes an IGBT that conducts current between a supply and load. The vehicle powertrain also includes a controller that applies voltage to a gate of the IGBT at a first level for a first duration that depends on a capacitance of the gate, and increases the voltage over a second duration based on a rate of change of the current falling below a threshold defined by a supply voltage for the load.
摘要:
Disclosed is a high voltage inverter for converting DC power to AC power with one or more AC output phases. The inverter has for each AC output phase an AC input phase circuit comprising first and second cold cathode field emission controllable electron tubes of triode, tetrode or pentode structure. Each electron tube has a first input node for connection to a high voltage DC potential in excess of 20 KV and a second input node for connection to ground. First electron tube is serially connected between a first end of a primary winding and ground, and second electron tube is serially connected between a second end of the primary winding and ground. Control circuitry controls the electron tubes so that the first and second electron tubes alternatively conduct so as to alternately bring the first and then second end of the primary winding approximately to the potential of ground.