Abstract:
In the present legacy electrical power generation and distribution system, the power quality delivered to end consumers is being degraded by a number of disruptive technologies and legislative impacts; especially with the rapidly increasing myriad of privately owned and operated domestic and commercial distributed energy generation (DEG) devices connected at any point across a low voltage (LV) distribution network. The present invention bypasses this increasing critical DEG problem by offering a solution comprising an energy processing unit (EPU) that is installed at the electrical power point of use (POU).
Abstract:
A high power and high frequency resonant converter topology and control system operates in a configuration and mode that significantly reduces the voltage on the solid-state switches while retaining the soft switching features.
Abstract:
A universal electrical power converter having the combined capabilities of symmetrical and asymmetrical converters, bidirectionality, and simplicity is provided with methods for controlling it in single-stage conversion. In some cases, the converter charges an inductor connected in parallel between a regulated port and an unregulated port using energy stored by a capacitor positioned in parallel between the inductor and one of the ports until the inductor has a level of current stored that corresponds to the change in voltage desired at the regulated port, then discharges stored energy into the other port until a current cutoff threshold level is reached in the inductor. In some embodiments a single stage power converter is provided having three or more ports that can be connected and disconnected from the same inductor. Converters disclosed herein can convert AC signals when there is cross switching on at least one side or branch of the converter.
Abstract:
A triac driving circuit according to an embodiment of the present disclosure includes a phototriac coupler, a first resistive element, and a second resistive element, which are connected in series to the gate terminal of the triac. A minimum resistance of the first resistive element including tolerance is higher than the maximum resistance of the second resistive element including tolerance.
Abstract:
An energy saving alternate current (AC) series voltage regulator comprises an AC high frequency (HF) series voltage buck power regulator, a bypass contactor (K1), a bidirectional AC semiconductor device (S1) connected in parallel with the bypass contactor and a control circuitry. Under the condition of an input AC mains voltage (Vin) drops below a specified and set optimum energy savings voltage or a lower selected voltage point, the control circuitry transitions both the slow bypass contactor and the fast bidirectional AC semiconductor device, then the AC high frequency (HF) series voltage buck power regulator are switched out to save the AC high frequency (HF) series voltage buck power regulator internal power electronics usage. Under this condition, the lower input AC mains voltage is directly delivered to an electrical load by the contactor bypass system, hence achieving more energy savings.
Abstract:
The present application discloses methods, circuits and systems for power conversion, using a universal multiport architecture. When a transient appears on the power input (which can be, for example, polyphase AC), the input and output switches are opened, and a crowbar switch shunts the inductance which is used for energy transfer. This prevents this inductance from creating an overvoltage when it is disconnected from outside lines.
Abstract:
The present application discloses methods, circuits and systems for power conversion, using a universal multiport architecture. When a transient appears on the power input (which can be, for example, polyphase AC), the input and output switches are opened, and a crowbar switch shunts the inductance which is used for energy transfer. This prevents this inductance from creating an overvoltage when it is disconnected from outside lines.
Abstract:
A matrix converter includes a plurality of switching elements and is adapted to receive a multi-phase alternating current (AC) input signal having an input frequency and to generate a multi-phase AC output signal having an output frequency. The phases of the input signal are sorted as a function of their instantaneous voltage amplitude (60). A reference signal is generated from output reference voltages that correspond to each phase of the output signal (56). Duty cycles are calculated for each phase of the output signal based on the sorted input signal phases and the reference signal (62). Switching functions, which each control one of the switching elements, are then generated based on the duty cycles for each phase of the output signal (64, 66).
Abstract:
Provided is a bridge cascade system, which includes at least one phase unit and a driving unit for the phase unit. The phase unit includes N bridge topologies cascaded on alternating current AC sides. The driving unit includes one driving power supply circuit, multiple bootstrap power supply circuits and 2N driving circuits. In the phase unit, the driving circuits are powered by the driving power supply circuit directly or through corresponding bootstrap power supply circuits. The driving circuits are configured to provide driving signals for corresponding switch transistors in the phase unit. In this way, one driving power supply is matched with multiple bootstrap power supply circuits, realizing power supply to the driving circuits corresponding to the switch transistors of all bridge topologies, which reduces the difficulty in designing the driving power supply for the bridge cascade system and reduces cost for the system.
Abstract:
An energy saving alternate current (AC) series voltage regulator comprises an AC high frequency (HF) series voltage buck power regulator, a bypass contactor (K1), a bidirectional AC semiconductor device (S1) connected in parallel with the bypass contactor and a control circuitry. Under the condition of an input AC mains voltage (Vin) drops below a specified and set optimum energy savings voltage or a lower selected voltage point, the control circuitry transitions both the slow bypass contactor and the fast bidirectional AC semiconductor device, then the AC high frequency (HF) series voltage buck power regulator are switched out to save the AC high frequency (HF) series voltage buck power regulator internal power electronics usage. Under this condition, the lower input AC mains voltage is directly delivered to an electrical load by the contactor bypass system, hence achieving more energy savings.